当前位置: 首页 > news >正文

北京网站优化怎么样国内crm系统十大排名

北京网站优化怎么样,国内crm系统十大排名,wordpress widget hook,手机端怎么变成电脑端概述 在dify中有两种构建索引的方式,一种是经济型,另一种是高质量索引(通过向量数据库来实现)。其中经济型就是关键词索引,通过构建关键词索引来定位查询的文本块,而关键词索引的构建是通过Jieba这个库来完…

概述

在dify中有两种构建索引的方式,一种是经济型,另一种是高质量索引(通过向量数据库来实现)。其中经济型就是关键词索引,通过构建关键词索引来定位查询的文本块,而关键词索引的构建是通过Jieba这个库来完成的。

Jieba(“结巴”)是一个强大的中文分词和关键词提取工具库。在dify中,Jieba类作为一个基于关键词的文档检索系统的核心实现。

本文介绍关键词索引的构建类Jieba类的实现,包括:文本的索引的添加,修改等操作。

Jieba类的构成

Jieba类
基础功能
数据管理
搜索功能
关键词提取
分词处理
关键词表管理
存储策略
关键词搜索
文档检索

关键词索引创建

总体实现逻辑

关键词索引创建在create函数中实现,该函数的声明如下:

    def create(self, texts: list[Document], **kwargs) -> BaseKeyword:

该函数的主要逻辑如下:

开始创建关键词索引
获取Redis分布式锁
检查关键词表是否存在,若不存在,创建关键词表:dataset_keyword_tables
遍历文件分块列表: Document对象列表
关键词提取: extract_keywords
更新段落关键词
更新关键词表: 把关键词保存到字典中
保存关键词表: 保存关键词表到数据库或文件系统
返回实例
关键词提取:extract_keywords

关键词提取主要完成:从文本中提取关键词,支持停用词过滤和子词提取。extract_keywords函数的声明如下:

    def extract_keywords(self, text: str, max_keywords_per_chunk: Optional[int] = 10) -> set[str]:

该函数的处理流程如下:

输入文本
TFIDF关键词提取
子词拆分
停用词过滤
返回关键词集合
def extract_keywords(self, text: str, max_keywords_per_chunk: Optional[int] = 10) -> set[str]:"""Extract keywords with JIEBA tfidf."""# 1. 使用TFIDF算法提取关键词keywords = jieba.analyse.extract_tags(sentence=text,topK=max_keywords_per_chunk,  # 默认最多10个关键词)# 2. 扩展子词并过滤停用词return set(self._expand_tokens_with_subtokens(keywords))
def _expand_tokens_with_subtokens(self, tokens: set[str]) -> set[str]:"""获取tokens的子词,并过滤停用词"""results = set()for token in tokens:# 1. 添加原始tokenresults.add(token)# 2. 使用正则提取子词sub_tokens = re.findall(r"\w+", token)# 3. 如果存在多个子词if len(sub_tokens) > 1:# 过滤停用词并添加到结果集results.update({w for w in sub_tokens if w not in list(STOPWORDS)})return results
关键词存储

关键词存储的函数声明如下:

def _save_dataset_keyword_table(self, keyword_table):

其中处理完成的关键词,都已经保存到dataset_keyword_tables字典中了。

接收关键词表
构建元数据字典
判断存储类型
数据库存储: database
文件存储: file
JSON序列化
构建文件路径
检查文件是否存在: 若存在删除之
保存文件

该函数的详细实现如下:

    # 这段代码的主要功能是将一个关键词表 (dataset_keyword_tables) 保存到数据库或文件中,具体取决于数据源类型。def _save_dataset_keyword_table(self, keyword_table):# 创建数据字典,保存元数据信息keyword_table_dict = {"__type__": "keyword_table","__data__": {"index_id": self.dataset.id, "summary": None, "table": keyword_table},}# 记录数据集的数据来源类型dataset_keyword_table = self.dataset.dataset_keyword_tablekeyword_data_source_type = dataset_keyword_table.data_source_type# 数据源是数据库,则将字典编码为 JSON 字符串,并更新数据库中的 keyword_table 字段。然后提交事务。if keyword_data_source_type == "database":dataset_keyword_table.keyword_table = json.dumps(keyword_table_dict, cls=SetEncoder)db.session.commit()else:# 来源是文件,则构建一个文件键(路径),检查文件是否存在,如果存在则删除file_key = "keyword_files/" + self.dataset.tenant_id + "/" + self.dataset.id + ".txt"if storage.exists(file_key):storage.delete(file_key)# 最后将字典编码为 JSON 并保存到指定的文件路径。storage.save(file_key, json.dumps(keyword_table_dict, cls=SetEncoder).encode("utf-8"))
class SetEncoder(json.JSONEncoder):"""自定义JSON编码器,处理set类型"""def default(self, obj):if isinstance(obj, set):return list(obj)  # 将set转换为listreturn super().default(obj)

关键词查询

获取关键词表名,从表中查询对应数据集的关键词字典
获取top-k参数
提取查询字符串中的关键词,根据查询关键词在文档切片关键词中进行查询,并对结果排序
按排序切片索引id从数据库表中查询文档内容
构建Document对象
返回Document对象列表

search函数的详细实现分析:

    def search(self, query: str, **kwargs: Any) -> list[Document]:# 从dataset_keyword_tables表中获取对应数据集的数据分块记录字典keyword_table = self._get_dataset_keyword_table()k = kwargs.get("top_k", 4)# (1)使用Jieba对用户输入的查询字符串进行关键词提取# (2)然后从刚才查询出来的关键词字典中,查询出与查询字符串中关键词匹配的文本索引idsorted_chunk_indices = self._retrieve_ids_by_query(keyword_table, query, k)documents = []# 根据文本块索引id,从数据库中查询出对应的文本块内容for chunk_index in sorted_chunk_indices:segment = (db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index).first())# 以Document对象结构来返回结果if segment:documents.append(Document(page_content=segment.content,metadata={"doc_id": chunk_index,"doc_hash": segment.index_node_hash,"document_id": segment.document_id,"dataset_id": segment.dataset_id,},))return documents

小结

说明,分析到这里,我们基本上就了解了关键词查询的基本原理:对用户查询字符串进行分词处理(通过Jieba库),根据分词结果在对应数据集中查询对应分词,然后获取该分词对应的文本和文本块。

可见,关键词索引主要是依赖对文本进行分词,然后通过分词来进行匹配,从而找到对应文本块的数据。这种方式并没有从语义角度去理解文本,本质上是通过分词得到的关键词进行匹配的方式来找到对应文本块。与通过语义的方式来查找文本,这种方式会存在一定的局限性。

关键词添加和删除

关键词的添加和删除都是要先从数据表或文件中把该数据集原有关键词读取到一个字典中,然后对该字典中的关键词进行添加或删除操作,然后再把数据写回数据表或文件。

(1)先查询数据集对应的关键词表(或文件)的数据,并以字典的方式返回

(2)在字典中添加对应关键词

(3)把添加完关键词的字典再写回关键词存储表或文件中

关键词的删除和关键词添加步骤类似,只是在第二步会从获取到的字段中把关键词删除,然后再写回数据表或文件中。

总结

关键词索引方式不需要其他额外的存储组件就可以完成索引的构建,成本相对比较低,比较经济实惠。但该方式是通过分词和关键词匹配方式来构建的文本块查询,比起通过向量和语义匹配的方式,有一定的局限性,选择那种方式,需要根据具体的场景来确定。

http://www.yayakq.cn/news/903139/

相关文章:

  • 做58一样的网站黑河市建设局网站
  • vs做网站怎么把网页改为自适应大小淘客帝国 wordpress
  • 如何清空网站数据库做网站维护的是什么人
  • 湘潭网站网站建设费怎么记账
  • 赤峰网站建设哪个服务好品易云代理ip
  • 网站营销的流程影视公司名字取名
  • 涉县专业做网站网站建设:中企动力
  • 青海营销型网站建设100M家用宽带可做网站服务器吗
  • 网站建设 软件开发的公司排名软件 开发公司
  • 网站建设功能报价小程序设计软件
  • 移动终端网站建设vi系统整套设计
  • 学网站建设app恒丰建设集团有限公司 网站
  • 阿里云搭建公司网站六安建设厅网站
  • 做网站收获了什么wordpress绑定域名收费
  • 昌乐建设局网站wordpress跳转链接插件汉化
  • 南京网站制作系统樟树市建设局网站
  • 网站开发用什么语言最安全自己怎样做海外网站
  • 高端定制网站网站建设培训招生
  • 手机网站开发一个多少钱华为公司网站建设方案模板下载
  • 怎么在中国做网站网站网站建设主机
  • 有关学风建设网站大健康品牌策划公司
  • 漯河企业网站建设公司出口外贸交易平台
  • 网站改版目的科技龙头股一览表
  • 网站开发 价格差异手机网站分辨率做多大
  • 网站后台如何添加附件北京网站优化效果
  • 网站建设 金手指 排名22移动端开发需要什么技术
  • 如何提高网站点击量手机页面设计软件
  • 宁波建站模板厂家服务器上的网站怎么做301
  • 电商网站基本功能如何做品牌营销
  • 嘉兴地区有人做网站吗wordpress开发页面