当前位置: 首页 > news >正文

wordpress后台上不去昆山seo网站优化软件

wordpress后台上不去,昆山seo网站优化软件,南阳专业网站建设价格,建筑用网包括哪些题目描述 有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。 示例1: 输入:S “qqe” 输出:[“eqq”,“qeq”,“qqe”] 示例2: 输入:S “ab” 输出:[“ab”, “ba”] 提示: 字符都是英文字母。…

题目描述

有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。

示例1:

  • 输入:S = “qqe”
    输出:[“eqq”,“qeq”,“qqe”]

示例2:

  • 输入:S = “ab”
    输出:[“ab”, “ba”]

提示:

  • 字符都是英文字母。
    字符串长度在[1, 9]之间。

解题思路与代码

这道题一看还是一道关于排列的问题。只要有关排列的问题,我们都可以通过回溯法去解决。

方法一: 回溯法 + 使用unordered_set数据结构进行去重

如果没有做过《程序员面试金典(第6版)》面试题 08.07. 无重复字符串的排列组合(回溯算法,全排列问题)C++
这道题的小伙伴,先去做一下这道题。

这道题与上面链接的那道题非常像,只不过,这里字符串中的字符开始出现有重复的字符了。所以我们做这道题的时候就需要去重。我们直接用unordered_set这种数据结构去去一下重好了。代码与上道题的代码没什么区别,这里给出这道题的代码:

class Solution {
public:vector<string> permutation(string S) {unordered_set<string> result;backtracking(S,result,0);vector<string> vec;for(auto a : result){vec.push_back(a);}return vec;}void backtracking(string& S,unordered_set<string>& result,int begin){if(begin == S.size()){result.insert(S);return;}for(int i = begin;i < S.size(); ++i){swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • 这段代码的时间复杂度主要取决于两个部分:backtracking 函数的执行次数以及将结果从 unordered_set 转移到 vector 的时间。

  • backtracking 函数的执行次数:对于长度为 n 的字符串,我们需要对每个字符进行排列组合,这会产生 n! 个排列。在回溯算法中,我们会遍历整个排列空间。因此,backtracking 函数的执行次数为 O(n!)。

  • 将结果从 unordered_set 转移到 vector:result 中最多有 n! 个元素。遍历 result 并将其中的元素插入 vector 的时间复杂度为 O(n!)。

  • 综合这两部分,总的时间复杂度为 O(n!)。

空间复杂度:

  • 空间复杂度主要取决于三个方面:递归调用栈的深度、结果存储在 unordered_set 中所占用的空间,以及结果向量 vec 所占用的空间。

  • 递归调用栈的深度:在回溯算法中,递归调用栈的深度等于字符串的长度 n。因此,递归调用栈的空间复杂度为 O(n)。

  • 结果存储在 unordered_set 中所占用的空间:result 中最多有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果存储在 unordered_set 中所占用的空间复杂度为 O(n * n!)。

  • 结果向量 vec 所占用的空间:vec 中有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果向量所占用的空间复杂度为 O(n * n!)。

  • 由于这三部分空间是算法使用的空间,因此总的空间复杂度为这三者之和,即 O(n) + O(n * n!) + O(n * n!) = O(2 * n * n!) = O(n * n!)。

  • 所以,这段代码的时间复杂度为 O(n!),空间复杂度为 O(n * n!)。

方法二 :对代码一的方法进行优化。

在这道题里,因为可能有重复的字符,方法一是直接用unordered_set在结果处进行去重,重复的答案不会被存进集合中,但这种方法不会减少递归的此时。那有没有一种方法,可以在做交换的时候就进行剪枝操作而进行去重呢,而去减少递归的次数呢?

答案当然是有,我们可以通过一个unordered_set去记住在当前的这一层循环里出现过哪些字符,如果出现了重复的字符,那我们就跳过这次交换,直接进入下一次交换。这样也同样达到了去重的目的,也减少了递归的次数。但是不好的一点是增加了内存的存储空间,因为每一层递归都要创建一个unordered_set去存储出现过的字符。

具体代码如下:

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S, result, 0);return result;}void backtracking(string &S, vector<string> &result, int begin) {if (begin == S.size()) {result.push_back(S);return;}unordered_set<char> used_chars;  // 用于存储已经在当前位置出现过的字符for (int i = begin; i < S.size(); ++i) {if (used_chars.find(S[i]) != used_chars.end()) {continue;  // 如果当前字符已经在当前位置出现过,则跳过这次交换}used_chars.insert(S[i]);  // 记录当前字符swap(S[i], S[begin]);backtracking(S, result, begin + 1);swap(S[i], S[begin]);}}
};

在这里插入图片描述

复杂度分析

通过这种剪枝策略,我们避免了搜索重复的路径,从而降低了时间复杂度。然而,在最坏情况下(如所有字符都不同),算法的时间复杂度仍然是 O(n!)。空间复杂度与之前的分析相同,为 O(n * n!)。虽然这种剪枝策略不能在理论上改进时间复杂度,但在有重复字符的情况下,实际运行效率会有所提升,但是同样每一层都会多创建出一个unordered_set去存储至多n个字符,会多消耗一部分的内存空间。

方法三,对代码二的再次优化!

这一次我们写了一个hasDuplicate函数来检查有没有重复出现的字符。这样就不会使用额外的内存空间去存储字符了。
因为begin的值肯定是要比i小的,因为i会递增,而begin不会,从而我们在这个函数中,去递增begin,看看有没有会出现与i相当的字符,如果出现了,就说明有重复,就要跳过这个循环!

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S,result,0);return result;}void backtracking(string& S,vector<string>& result,int begin){if(begin == S.size()) {result.push_back(S);return;}for(int i = begin; i < S.size(); ++i){if(hasDuplicate(S,begin,i)) continue;swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}bool hasDuplicate(string& S, int begin,int end){for(int i = begin; i < end; ++i)if(S[i] == S[end]) return true;return false;}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • permutation 函数的时间复杂度主要取决于 backtracking 函数。在最坏情况下,回溯算法将尝试所有可能的排列组合,即 n!。
  • hasDuplicate 函数的时间复杂度为 O(n)(在 for 循环内部进行比较)。
  • backtracking 函数中调用了 hasDuplicate 函数,所以在最坏情况下,总时间复杂度为 O(n! * n)。

空间复杂度:

  • 结果向量 result 的空间复杂度为 O(n!),因为它需要存储所有排列组合。
  • 递归栈的空间复杂度为 O(n),因为最深的递归调用次数等于字符串的长度。
  • 总的空间复杂度为 O(n! + n)。

综上所述,该算法的时间复杂度为 O(n! * n),空间复杂度为 O(n! + n)。

虽然说,代码1,2,3的时间复杂度都是O(n!),但是在代码三的实际时间复杂度要比1,2快了不少。

总结

这道题不算一道特别难的题。但是呢,剪枝和去重,才是这道题的重中之重。写出简洁并且高效的回溯算法并不容易。我们还得去多学习多总结!

http://www.yayakq.cn/news/144292/

相关文章:

  • 装修土巴兔seo公司怎么推广宣传
  • 模板建站和仿站三亚网站建设介绍
  • 国外做地铁设计的公司网站效果图制作公司排名
  • 游戏设计 网站wordpress 表分析
  • wordpress 动漫网站wordpress微信授权登录
  • 现在哪些网站做外贸的好做北京正邦设计
  • 哈尔滨的网站设计做淘宝客网站骗钱
  • 深圳模板网站建设哪家好企业官网手机版
  • 有域名怎样建设网站俄罗斯局势最新消息
  • 上犹网站建设wordpress下载网页
  • 我的网站模板下载不了石家庄网站定制
  • 仿 手机 网站模板html源码王妃
  • 天津低价网站建设建筑设计说明万能模板
  • 广州住建厅官方网站wordpress 付费文章
  • 阿里云 iis 多个网站网站开发项目实战视频
  • 徐老师在那个网站做发视频制作app开发制作
  • 邯郸做wap网站资深品牌策划公司
  • 中国航天建设集团有限公司网站建永久网站
  • 怎样在手机做自己的网站jquery 上传wordpress
  • 免费个人网站申请网络推广常用工具
  • 网站做seo需要哪些准备建设企业网站官网u盾
  • 网站流程表哪个网站可以做片头
  • 网站搭建徐州百都网络搭建山东济南网网站建设
  • 网站开发服务税率是多少建设合同网上备案上哪个网站
  • 门户网站建设报告vs215开发python网站开发
  • 网站没有经过我司审核通过白名单学网站开发可以创业吗
  • 专业做网站官网制作网页计算器
  • 做网站需要缴什么费用网站建设背景分析
  • 中英文双语企业网站网站经营与建设
  • 主机做网站做ppt模板网站