当前位置: 首页 > news >正文

wordpress网页图片加载网站改版 seo

wordpress网页图片加载,网站改版 seo,长沙百度搜索网站排名,桂林 网站建站决策树与分类案例分析 文章目录 决策树与分类案例分析1. 认识决策树2. 分类3. 决策树的划分依据4. 决策树API5. 案例:鸢尾花分类6. 决策树可视化7. 总结 1. 认识决策树 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最…

决策树与分类案例分析

文章目录

  • 决策树与分类案例分析
    • 1. 认识决策树
    • 2. 分类
    • 3. 决策树的划分依据
    • 4. 决策树API
    • 5. 案例:鸢尾花分类
    • 6. 决策树可视化
    • 7. 总结

1. 认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。下面就来举一个例子:

在这里插入图片描述

通过这一个例子我们会有一个问题,为什么女生会把年龄放在第一个呢?这就是决策树的一个思想:高效性。

2. 分类

为了更好理解决策树是怎么分类的,我们给出一个例子:

在这里插入图片描述

现在我们有这些数据,请你根据这些数据,判断一个ID为16的人,是否能够贷款。我们现在要做的就是如何划分年龄、工作、房子、信贷这些数据。我们可以先看房子,再看工作…也可以先看工作,再看信贷…我们该如何选择来更高效的进行判断,所以我们引入信息熵、信息增益、条件熵、不确定性…

机器学习笔记02–决策树算法(手把手教你看懂)—信息熵,信息增益,增益率,基尼系数

计算过程这里就不演示了,直接出结果吧,我们以A·1,A2,A3,A4代表年龄、有工作、有自己的房子和贷款情况。最终计算的结果g(D,A1)=0.313,g(D,A2)=0.324,g(D,A3)=0.420,g(D,A4)=0.363,所以我们选择A3作为划分的第一个特征,这样我们就可以慢慢建立起一棵树。

3. 决策树的划分依据

决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算了

  • ID3:信息增益,最大的准则
  • C4.5:信息增益比,最大的准则
  • CART
    • 分类树:基尼系数 最小的准则 再sklearn中可以选择划分的默认原则
    • 优势:划分更加细致

4. 决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=‘gini’,max_depth=None,random_state=None)

  • 决策树分类器
  • criterion:默认是‘gini’系数,也可以选择信息增益的熵‘entropy’
  • max_depth:树的深度大小
  • random_state:随机数种子

5. 案例:鸢尾花分类

def decision_iris():"""决策数对鸢尾花进行分类:return:"""# 划分数据集iris = load_iris()# 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state= 22)# 决策树预估器estimator = DecisionTreeClassifier(criterion= "entropy")estimator.fit(x_train, y_train)# 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法2:计算准确率score = estimator.score(x_test, y_test)print("准确率为:", score)return None
y_predict:[0 2 1 2 1 1 1 1 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 1 2 2 1 0 0 1 1 1 0 00]
直接比对真实值和预测值:[ True  True  True  True  True  True  True False  True  True  True  TrueTrue  True  True  True  True  True False  True  True  True  True  TrueTrue  True False  True  True False  True  True  True  True  True  TrueTrue  True]
准确率为: 0.8947368421052632

6. 决策树可视化

保存树的结构到dot文件

sklearn.tree.export_graphviz()

  • tree.export_graphviz(estimator,out_file=“./tree.dot”,feature_name=[“,”])
export_graphviz(estimator, out_file= "./tree.dot", feature_names= iris.feature_names)

生成了一个文件之后,我们需要把里面的文本导入到一个网站里面:http://webgraphviz.com/ 导入之后就成功了。

在这里插入图片描述

7. 总结

优点:

  • 简单的理解和解释,树木可视化

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合

改进:

  • 减枝cart算法
  • 随机森林
http://www.yayakq.cn/news/584299/

相关文章:

  • 北京国互网网站建设报价苏州广告设计制作公司
  • 什么公司做企业网站百度推广点击一次多少钱
  • 高大上的公司网站什么网站做产品销售做的好
  • 邢台网站制作地址seo网站优化培训班
  • 网站建设指标桂林北京网站建设
  • 建酒店网站wordpress 页面代码
  • 深圳市公司网站建设公司网站优化主要内容
  • 网站建设项目概要设计方案深圳软件开发工作室
  • 在家做网站编辑wordpress固定
  • 淘客网站如何做推广龙华建设网站公司
  • 什么是网站设计与建设万网制作淘宝客网站
  • erp系统是怎样的一个软件北京谷歌优化
  • 无锡做网站的公司深圳做网站 信科便宜
  • 网站制作详细报价表重庆最大的网络公司
  • 住房和城乡建设主管部门网站网站如何做cdn
  • 厦门服装企业网站推广广州专业做网站的公司
  • 网站设置访问密码夏邑县城乡建设规划局网站
  • 北京门户网站制作桂林创新大厦网站
  • 新开家政如何做网站制作ppt的软件有哪些
  • 成立网站要多少钱哈尔滨百度公司地址
  • 做卖车网站需要什么手续织梦图片网站源码下载
  • 移动端教学视频网站开发农业大学网站建设特点
  • 杭州服装论坛网站建设始兴建设局网站
  • 织梦网站版权做网站给文件不侵权
  • wordpress网站不安全手机网站建设万网
  • 哪家网站游戏做的比较好企业建网站群
  • 购物网站的推广wordpress默认邮件文件夹
  • 兰州网站在哪备案.net做网站用什么的多
  • 网站显示搜索框学生兼职网站开发
  • 建设局考试通知文件网站有什么网站做热图