当前位置: 首页 > news >正文

织梦绿色企业网站模板 苗木企业网站源码 dedecms5.7内核wordpress 文章去掉时间

织梦绿色企业网站模板 苗木企业网站源码 dedecms5.7内核,wordpress 文章去掉时间,手机网站开发需求文档,wordpress淘宝客防被k文章目录 1.层次聚类法原理简介2.层次聚类法基础算法演示2.1.Single-linkage的计算方法演示2.2.Complete-linkage的计算方法演示2.3.Group-average的计算方法演示 3.层次聚类法拓展算法介绍3.1.质心法原理介绍3.2.基于中点的质心法3.3.Ward方法 4.层次聚类法应用实战4.1.层次聚…

文章目录

    • 1.层次聚类法原理简介
    • 2.层次聚类法基础算法演示
      • 2.1.Single-linkage的计算方法演示
      • 2.2.Complete-linkage的计算方法演示
      • 2.3.Group-average的计算方法演示
    • 3.层次聚类法拓展算法介绍
      • 3.1.质心法原理介绍
      • 3.2.基于中点的质心法
      • 3.3.Ward方法
    • 4.层次聚类法应用实战
      • 4.1.层次聚类法聚类应用
      • 4.2.层次聚类法聚类树绘制
        • 4.2.1.Single-linkage连接方法
        • 4.2.2.Complete-linkage连接方法
        • 4.2.3.Group-average连接方法
        • 4.2.4.Centroid连接方法
        • 4.2.5.Ward连接方法
    • 5.致谢

1.层次聚类法原理简介

#聚合聚类(层次聚类方法)
"""
1.层次聚类顾名思义就是按照某个层次对样本集进行聚类操作,这里层次并非是真实的层次,实际上指的就是某种距离定义,(我们其实已经学过了很多的距离定义了)
2.层次聚类方法的目标就是采用自下而上的方法去去消除类别的数量,类似与树状图的由叶子结点向根结点靠拢的过程。
3.更简单的说,层次聚类是将初始化的多个类簇看做树节点,每一次迭代都会两两距离相近的类簇进行合并,如此反复,直至最终只剩一个类簇(也就是根结点)。
"""

2.层次聚类法基础算法演示

层次聚类法的三种不同方法:
依据对相似度(距离)的不同定义,将层次聚类法的聚类方法分为三种:
1.Single-linkage:要比较的距离为元素对之间的最小距离。
2.Complete-linkage:要比较的距离为元素对之间的最大距离。
3.Group average:要比较的距离为类之间的平均距离。
我们首先拿出几个数据进行计算演示一番这最基础的算法,如图所示,这是ABCDE五个点的相互之间的距离:
在这里插入图片描述

2.1.Single-linkage的计算方法演示

Single-linkage:要比较的距离为元素对之间的最小距离。所以我们需要找到每个点对应的最小距离。
第一步:A的最小距离是B,所以AB先合并,记作{AB}。
在这里插入图片描述
第二步:以AB为整体进行对C合并的研究。在这里插入图片描述
最后发现CD最短,合并记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

2.2.Complete-linkage的计算方法演示

2.Complete-linkage:要比较的距离为元素对之间的最大距离。所以我们需要找到每个点对应的最大距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。
aad5384fbf5f056a6.png)
第二步:
C与各元素的最大距离的最小值如下所示:
在这里插入图片描述
所以C的各元素的最大距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

2.3.Group-average的计算方法演示

Group-average要比较的距离为元素对之间的最平均距离。所以我们需要找到每个点对应的最平均距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。
aad5384fbf5f056a6.png)
第二步:
C与各元素的平均距离的最小值如下所示:
在这里插入图片描述
所以C的各元素的最平均距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E的平均距离最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

3.层次聚类法拓展算法介绍

来源:https://blog.csdn.net/huangguohui_123/article/details/106995538

3.1.质心法原理介绍

在这里插入图片描述
如果两个族群合并之后,下一步合并时的最小距离反而减小(质心在不断变化),我们则称这种情况为倒置(Reversal/Inversion),在系统树图中表现为交叉(Crossover)现象。

在一些层次聚类方法中,如简单连接、完全连接和平均连接,倒置不可能发生,这些距离的度量是单调的(monotonic)。显然质心方法并不是单调的。

3.2.基于中点的质心法

在这里插入图片描述

3.3.Ward方法

在这里插入图片描述

4.层次聚类法应用实战

4.1.层次聚类法聚类应用

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
#%%
# 读取数据
data = pd.read_excel('Clustering_5.xlsx')
# 提取特征和标签
X = data.iloc[:, :2].values
y = data['y'].values
# 创建凝聚聚类模型
n_clusters = 5
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters)
# 进行聚类
labels = agg_clustering.fit_predict(X)
#%%
# 绘制聚类结果
plt.figure(figsize=(10, 6))
for i in range(n_clusters):cluster_points = X[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}',s=16)plt.title('Agglomerative clustering')
plt.legend()
plt.show()

聚类效果比较不错
在这里插入图片描述

4.2.层次聚类法聚类树绘制

4.2.1.Single-linkage连接方法
#%%
linked = linkage(X, 'single')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Single-linkage连接方法')
plt.show()

在这里插入图片描述

4.2.2.Complete-linkage连接方法
#%%
linked = linkage(X, 'complete')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Complete-linkage连接方法')
plt.show()

在这里插入图片描述

4.2.3.Group-average连接方法
#%%
linked = linkage(X, 'average')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Group-average连接方法')
plt.show()

在这里插入图片描述

4.2.4.Centroid连接方法
#%%
linked = linkage(X, 'centroid')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Centroid连接方法')
plt.show()

在这里插入图片描述

4.2.5.Ward连接方法
# 绘制树状图(聚类树)
linked = linkage(X, 'ward')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Ward连接方法')
plt.show()

在这里插入图片描述

5.致谢

本章内容的完成离不开以下大佬文章的启发和帮助,在这里列出名单,如果对于内容还有不懂的,可以移步对应的文章进行进一步的理解分析。
1.层次聚类法的基础算法演示https://blog.csdn.net/qq_40206371/article/details/123057888
2.层次聚类法的进阶算法演示https://blog.csdn.net/huangguohui_123/article/details/106995538
在文章的最后再次表达由衷的感谢!!
http://www.yayakq.cn/news/898312/

相关文章:

  • 北京网站制作与营销培训wordpress换logo
  • 怎样简单做网站建工网和环球网哪个好
  • 网站建设后的专人维护网站开发的可行性报告
  • 个人备案网站内容网站制作软件排行榜
  • 清镇网站建设wordpress 顶部 空白
  • 做网站的服务器很卡怎么办手机网站模板.
  • 动易企业网站宁波网络推广店
  • 旅游网站模板文章合肥房价查询网
  • 高端品牌网站建设兴田德润在那里做网站能收回吗
  • 网站首页设计与制作建站公司哪家好 知道万维科技
  • asp网站开发 pdf济南企业网站
  • 金华网站建设公司哪个好图片制作pdf
  • 专科网站建设论文包装技术支持 东莞网站建设
  • 网站建设具体工作总结网站流量统计工具有哪些
  • 荥阳网站开发seo关键词排名优化公司
  • 莱州教研室网站阿里巴巴logo发展史
  • 石家庄做网站费用门户网站asp源码
  • 收费的网站怎么做的制作ppt的软件有哪些
  • 甘肃网站备案网站色彩
  • 台州椒江网站建设wordpress 标签设置
  • 企业营销类专业网站wordpress国内视频网站吗
  • 重庆梁平网站建设费用做网站教程和维护网站
  • 苏州企业网站设计方案建站平台的基础概念
  • 上海做网站的公司做文案的网站有些什么软件
  • 怎样做公司的网站app网站推广平台
  • 乐山住房和规划建设局门户网站西宁网站设计公司价格
  • 贵港做网站化司品牌策划公司收费标准
  • 建视频网站模板仁寿网站建设
  • 如东网站建设哪家好成全视频免费观看在线看厨房电视剧下载
  • 社交网站 用户互黏度2017网站建设公司排名