当前位置: 首页 > news >正文

网络公司网站建设规划网络公司什么意思

网络公司网站建设规划,网络公司什么意思,网页打包成app免费,怎么增加网站关键词库知识要点 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。 常见的迁移学习方式: 载入权重后训练所有参数.载入权重后只训练最后几层参数.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层.训练数据是 10_m…

知识要点

  • 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。

  • 常见的迁移学习方式:

    • 载入权重后训练所有参数.
    • 载入权重后只训练最后几层参数.
    • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.
  • 训练数据是 10_monkeys 数据: 10种猴子的图片集
  • 图片显示: plt.imshow(mokey)
  • 读取图片: mokey = plt.imread('./50.jpg')

导入resnet 模型:

  • resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')      # 导入模型
  • model = keras.models.Sequential()      # 开始建模
  • model.add(resnet50)     # 添加resnet 网络
  • model.add(keras.layers.Dense(num_classes=10, activation = 'softmax'))     # 添加全连接层
  • model.layers[0].trainable = False     # 除了最后一个全连接层, 其余部分参数不变
  • 模型配置:
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
  • valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)    # 数据初始化处理
  • 指定后面几层参数变化:
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False


一 迁移学习

1.1 简介

使用迁移学习的优势:

  • 能够快速的训练出一个理想的结果
  • 当数据集较小时也能训练出理想的效

注意:使用别人预训练模型参数时,要注意别人的预处理方式。

1.2 常见迁移方式

常见的迁移学习方式:

  • 载入权重后训练所有参数.
  • 载入权重后只训练最后几层参数.
  • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.

二 代码实现

2.1 导包

from tensorflow import keras
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

2.2 迁移模型  (在迁移模型 后加一层)

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')num_classes =10
model = keras.models.Sequential()
model.add(resnet50)
model.add(keras.layers.Dense(num_classes, activation = 'softmax'))
model.summary()

2.3 配置模型 (除最后一层外, 其余参数全部冻结)

# 把除最后一层的参数外, 全部冻结
model.layers[0].trainable = False
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])

2.4 导入数据

train_dir = '../day 48 resnet/training/training/'
valid_dir = '../day 48 resnet/validation/validation/'
  • 原始数据处理
train_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input,rotation_range = 40,width_shift_range = 0.2,height_shift_range = 0.2,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True,vertical_flip = True,fill_mode = 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10train_generator = train_datagen.flow_from_directory(train_dir,target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode= 'categorical')valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size= (height, width),batch_size= batch_size,shuffle= True,seed = 7,class_mode= 'categorical')
print(train_generator.samples)   # 1098
print(valid_generator.samples)   # 272

2.5 模型训练

# 使用迁移学习, 效果较差, 原始数据的处理方式不同
# 修改需处理方式继续执行, 效果较好
histroy = model.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

 2.6 训练后面几层神经网络参数

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet')
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False# 添加输出层
resnet50_new = keras.models.Sequential([resnet50, keras.layers.Dense(10, activation = 'softmax')])
resnet50_new.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
resnet50_new.summary()

histroy = resnet50_new.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

三 图片处理查看

3.1 图片显示

# 预测数据
mokey = plt.imread('./n5020.jpg')
plt.imshow(mokey)    # mokey.shape  (600, 336, 3)

for i in range(2):x, y = train_generator.next()print(type(x), type(y))    # <class 'numpy.ndarray'> <class 'numpy.ndarray'>print('***', x.shape, y.shape)  # *** (32, 224, 224, 3) (32, 10)

3.2 尺寸变换

# 主要是形状和尺寸不对
# 改变尺寸, 再改变形状reshape
from scipy import ndimage  # 专门处理图片
# 改变形状
# 224 = 367 * x  x = 224/367
# 224 = 550 * y  y = 224/550
zoom = (224/mokey.shape[0], 224/mokey.shape[1])
monkey_zoomed = ndimage.zoom(mokey, (224/mokey.shape[0], 224/mokey.shape[1], 1))
monkey_zoomed.shape   # (224, 224, 3)
monkey_1 = keras.applications.resnet50.preprocess_input(monkey_zoomed)
monkey_1.min()    # -123.68
monkey_1 = monkey_1.reshape(1, 224, 224, 3)
model.predict(monkey_1).argmax(axis = 1)  # array([5], dtype=int64)

3.3 resnet 图片处理方式

3.3.1 前景查看

mokey1 = mokey/127.5
plt.imshow(mokey1)

3.3.2 背景查看

mokey1 = mokey1 - 1
plt.imshow(mokey1)

mokey1

http://www.yayakq.cn/news/774282/

相关文章:

  • 广州网站建设设计厂家网站集群怎么做
  • 如何把物流做免费网站网站维护主要从哪几个方面做
  • 盐城网站建设价位室内设计的软件有哪些
  • 自己的网站 做采集怎么做城市建设杂志社官方网站
  • 织梦网站栏目不显示不出来一WordPress
  • 有趣的网站名称游戏网站建设计划书
  • 自己做的网站百度收索不到wordpress图片转文字
  • 建设银行网站特点农产品网站开发 文献综述
  • 山西云起时网站建设阳江一中启业网
  • 如何为一个网站做短连接下载班级优化大师并安装
  • 百度网址大全网站中国建设银行网站主要功能
  • 网站维护和推广方案手机网站建站公司有哪些
  • 北京网站建设哪家最好安阳市网站建设的公司
  • 简单网站建设的费用微信微网站开发报价
  • 河南建设网站信息查询中心民宿网站开发的开题报告
  • 信息网站建设汇报企业如何做好网站运营
  • 网站建设大作业论文科技网站设计公司
  • 合肥网站制作培训做淘宝设计能做网站吗
  • 哪个做网站的公司好章丘灵通环保设备在哪个网站上做的
  • 电子商务网站建设和维护怎么自己做投票网站
  • 美食网站建设项目分析报告windows优化软件哪个好
  • 专业网站建设设计装饰馀姚网站建设
  • 做纺织的用什么网站简述酒店类网站开发的策略
  • 投票网站模板寻找南昌网站设计单位
  • 佘山做网站公司eefocus电子工程网
  • 河南如何建网站要什么条件油画风网站
  • 上海市工程信息网站工程建设标准网站
  • 做标书要不要做网站做游戏音频下载网站
  • 易点科技网站建设常州手机网站建设
  • 那个网站教你做毕设的工程建设企业等采用