重庆市建设工程信息网官方网站软件公司薪酬绩效方案
这里写目录标题
- 1.重建二叉树
 - 题目
 - 题解
 - (递归) O(n)
 
- 2.二叉树的下一个节点
 - 题目
 - 题解
 - (模拟) O(h)
 
- 3.用两个栈实现队列
 - 题目
 - 题解
 - (栈,队列) O(n)
 
1.重建二叉树
题目

题解
(递归) O(n)
递归建立整棵二叉树:先递归创建左右子树,然后创建根节点,并让指针指向两棵子树。
前序遍历(根 左 右)中序遍历(左 根 右) 后序遍历(左 右 根)
具体步骤如下:
- 先利用前序遍历找根节点:前序遍历(根 左 右)的第一个数,就是根节点的值;
 - 在中序遍历中找到根节点的位置 k,则 k 左边是左子树的中序遍历(左 根 右),右边是右子树的中序遍历;
 - 假设左子树的中序遍历的长度是 l,则在前序遍历中,根节点后面的 l 个数,是左子树的前序遍历,剩下的数是右子树的前序遍历;
 - 有了左右子树的前序遍历和中序遍历,我们可以先递归创建出左右子树,然后再创建根节点;
 
时间复杂度分析
我们在初始化时,用哈希表(unordered_map<int,int>)记录每个值在中序遍历中的位置,这样我们在递归到每个节点时,在中序遍历中查找根节点位置的操作,只需要 O(1) 的时间。此时,创建每个节点需要的时间是 O(1),所以总时间复杂度是 O(n)。
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
//preorder前序遍历(根 左 右),inorder中序遍历(左 根 右)
class Solution {
public:unordered_map<int, int> pos; TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {int n = preorder.size();for (int i = 0; i < n; ++i)pos[inorder[i]] = i;  //用哈希表记录每个值在中序遍历中的位置 return dfs(preorder, inorder, 0, n - 1, 0, n - 1);    }//前序遍历pre的范围是[pl,pr], 中序遍历in的范围是[il,ir]TreeNode* dfs(vector<int>& pre, vector<int>& in, int pl, int pr, int il, int ir) {if (pl > pr) return NULL;int k = pos[pre[pl]] - il;  //寻找前序的根节点在中序遍历中是在第几个位置TreeNode* root = new TreeNode(pre[pl]); //生成新的根节点root->left = dfs(pre, in, pl + 1, pl + k, il, il + k - 1);root->right = dfs(pre, in, pl + k + 1, pr, il + k + 1, ir);return root;}
};
 
2.二叉树的下一个节点
题目

题解
(模拟) O(h)
这道题目就是让我们求二叉树中给定节点的后继。
中序遍历(左 根 右)
分情况讨论即可,如下图所示:
- (左 根 右)如果当前节点有右儿子,则右子树中最左侧的节点就是当前节点的后继。比如F的后继是H;
 - (左 根)如果当前节点没有右儿子,**则需要沿着father域一直向上找,找到第一个是其(这个其非当前节点)father左儿子的节点,该节点的father就是当前节点的后继。**比如当前节点是D,则第一个满足是其father左儿子的节点是F,则C的father就是D的后继,即F是D的后继。
 

时间复杂度分析
不论往上找还是往下找,总共遍历的节点数都不大于树的高度。所以时间复杂度是 O(h),其中 h 是树的高度。
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode *father;*     TreeNode(int x) : val(x), left(NULL), right(NULL), father(NULL) {}* };*/
class Solution{
public:TreeNode* inorderSuccessor(TreeNode* p) {if (p->right) {p = p->right;  //易错带while (p->left) p = p->left;return p;}//p == p->father->right 用来判断p是否是右节点while (p->father && p == p->father->right) p = p->father;return p->father;}
};
 
3.用两个栈实现队列
题目

题解
(栈,队列) O(n)
这是一道基础题,只要把功能实现对就可以,不需要考虑运行效率。
我们用两个栈来做,一个主栈,用来存储数据;一个辅助栈,用来当缓存。
栈:先进后出,队列:先进先出
push(x),我们直接将 x 插入主栈中即可。pop(),此时我们需要弹出最先进入栈的元素,也就是栈底元素。我们可以先将所有元素从主栈中弹出,压入辅助栈中。则辅助栈的栈顶元素就是我们要弹出的元素,将其弹出即可。然后再将辅助栈中的元素全部弹出,压入主栈中。peek(),可以用和pop()操作类似的方式,得到最先压入栈的元素。empty(),直接判断主栈是否为空即可。
时间复杂度分析
push():O(1);pop(): 每次需要将主栈元素全部弹出,再压入,所以需要 O(n) 的时间;peek():类似于pop(),需要 O(n) 的时间;empty():O(1);
class MyQueue {
public:/** Initialize your data structure here. */stack<int> stk, cache;MyQueue() {  //初始化,如果栈不为空,则用while()清空while (!stk.empty()) {stk.pop();}while (!cache.empty()) {cache.pop();}}/** Push element x to the back of queue. */void push(int x) {stk.push(x);}void copy(stack<int>& a, stack<int>& b) {while (a.size()) {b.push(a.top());a.pop();}}/** Removes the element from in front of queue and returns that element. */int pop() {if (stk.empty()) return -1;  //如果栈为空,返回-1copy(stk, cache);int res = cache.top();cache.pop();copy(cache, stk);return res;}/** Get the front element. */int peek() {if (stk.empty()) return NULL;  //如果栈为空,返回NULLcopy(stk, cache);int res = cache.top();copy(cache, stk);return res;}/** Returns whether the queue is empty. */bool empty() {return stk.empty();}
};/*** Your MyQueue object will be instantiated and called as such:* MyQueue obj = MyQueue();* obj.push(x);* int param_2 = obj.pop();* int param_3 = obj.peek();* bool param_4 = obj.empty();*/
