当前位置: 首页 > news >正文

北京h5网站建设报价免费在线观看电影大全

北京h5网站建设报价,免费在线观看电影大全,南皮做网站价格,商城网站建设清单在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客) 堆实现 计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。 什么叫完全二叉树? 答&#x…

在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客)

堆实现

计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。

什么叫完全二叉树?

答:

1.除了最后一层不用满足有两个分支,其他层都要满足有两个分支

2.如果再往完全二叉树中加一个节点,那么必须靠左添加,从左往右依次填满,左边没有填满之前,右边就不能填,如图:

添加前:

添加后:

堆的特性如下:堆分为两种:大顶堆与小顶堆

  • 在大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

  • 而小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

  • 最顶层的节点(没有父亲)称之为 root 根节点

例1 - 满二叉树(Full Binary Tree)特点:每一层都是填满的

例2 - 完全二叉树(Complete Binary Tree)特点:最后一层可能未填满,靠左对齐

大顶堆

大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

代码实现:


/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 大顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//TODO 利用堆来实现排序//1. heapify 建立大顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

 

小顶堆

小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

代码实现:

/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 小顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MinHeap {int[] array;int size;public MinHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}public boolean isFull(){return size==array.length;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MinHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//1. heapify 建立小顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MinHeap maxHeap = new MinHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

完全二叉树可以使用数组来表示

那完全二叉树显然是个非线性的数据结构,但是它存储的时候可以使用线性的数组结构来存储数据:

特征

  • 如果从索引 0 开始存储节点数据

    • 节点 i 的父节点为 floor((i-1)/2),当 i>0 时

    • 节点 i 的左子节点为 2i+1,右子节点为 2i+2,当然它们得 < size

  • 如果从索引 1 开始存储节点数据

    • 节点 i 的父节点为 floor(i/2),当 i > 1 时

    • 节点 i 的左子节点为 2i,右子节点为 2i+1,同样得 < size

堆的优化​​​​​​​

以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法:

public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {int[] array = {1, 2, 3, 4, 5, 6, 7};MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));}
}

Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):

如果对龟兔赛跑判环不了解的可以查看此文章:

  1. 找到最后一个非叶子节点 (叶子节点:没有孩子的节点

  2. 从后向前,对每个节点执行下潜

一些规律

  • 一棵满二叉树节点个数为 2^h-1,如下例中高度 h=3 节点数是 2^3-1=7

  • 非叶子节点范围为 [0, size/2-1]

算法时间复杂度分析

下面看交换次数的推导:设节点高度为 3

每一层的交换次数为:节点个数*此节点交换次数,总的交换次数为

即 h:总高度 i:本层高度

在 Wolfram|Alpha: Computational Intelligence 输入

Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]

推导出

通用堆

通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  15:56* @Description: TODO 通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆* @Version: 1.0*/
public class Heap {int[] array;int size;boolean max;public int size() {return size;}//当max为true则为大顶堆  如果是false则为小顶堆public Heap(int capacity, boolean max) {this.array = new int[capacity];this.max = max;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素*/public void offer(int offered) {if (size == array.length) {grow();}up(offered);size++;}//如果容量不够就进行扩容private void grow() {int capacity = size + (size >> 1);int[] newArray = new int[capacity];//将原有的数组重新放到扩容好的数组中System.arraycopy(array, 0,newArray, 0, size);array = newArray;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;boolean cmp = max ? offered > array[parent] : offered < array[parent];if (cmp) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public Heap(int[] array, boolean max) {this.array = array;this.size = array.length;this.max = max;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点  size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {min = left;}if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}}

 

http://www.yayakq.cn/news/657441/

相关文章:

  • 网站图片上传不上去怎么办傻瓜网站制作
  • 江北网站制作王烨然盈盈
  • 影院网站模板成都网站制作机构
  • 做ppt的模板网站有哪些太原做网络推广
  • 网站建设写代码自己怎么创业免费 网站 如何做
  • php 判断 $_get 然后跳转到相印的网站淘宝产品关键词排名查询
  • 网站建设的投资预算怎么写网站展示模板免费下载
  • 网站建设对企业的重要性typecho客户端wordpress
  • 设计有关的网站wordpress后台加载慢
  • 十堰网站优化排名做网站需要字体授权
  • 网站用户体验比较大连筑成建设集团有限公司网站
  • 快速建站完整版化妆品行业网站开发
  • phpcms网站seo怎么做seo网站模板下载
  • 河北斯皮尔网站建设wordpress调用登录logo
  • 邦派巴洛特网站是谁做的呀可以做女的游戏视频网站
  • 长春做网站搜吉网传媒微信公众号做公司网站
  • 可以充值的网站怎么做要求维护公司做网站整改的函
  • 东莞网站设计推荐易维达2电子商务网站的实施包括哪些步骤
  • 建设网站网站企业2022织梦cms侵权开庭
  • 网站开发有哪些职位自已创建网站要怎么做
  • 网站文件app建站哪家好 phpwind
  • 丰宁建设局网站wordpress搜索框选择分类
  • 会展设计超级优化残剑
  • 网址查询网站wordpress伪静态设置
  • 网站建设项目前景wordpress4.95
  • 行业网站建设费用哈尔滨建站模板源码
  • 温岭市溪建设局网站app网站设计
  • 公司网站建设需要注意哪些内容上海专业做网站的公司有哪些
  • 山西做网站贵吗换了家公司做网站如何接入备案
  • 网站做浮动边框asp代码泰兴网站建设吧