当前位置: 首页 > news >正文

深圳东莞的网站建设公司虚拟资源交易平台Wordpress源码

深圳东莞的网站建设公司,虚拟资源交易平台Wordpress源码,现在做网站需要多少钱,公司建设网站的服务费CUD Stream https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions 中指出在kenel的调用函数中最后一个可选参数表示该核函数处在哪个流之中。 - 参数Dg用于定义整个grid的维度和尺寸,即一个grid有多少个block。为dim3类型。…

CUD Stream

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
    中指出在kenel的调用函数中最后一个可选参数表示该核函数处在哪个流之中。
    在这里插入图片描述
- 参数Dg用于定义整个grid的维度和尺寸,即一个grid有多少个block。为dim3类型。Dim3 Dg(Dg.x, Dg.y, 1)表示grid中每行有Dg.x个block,每列有Dg.y个block,第三维恒为1(目前一个核函数只有一个grid)。整个grid中共有Dg.x*Dg.y个block,其中Dg.x和Dg.y最大值为65535- 参数Db用于定义一个block的维度和尺寸,即一个block有多少个thread。为dim3类型。Dim3 Db(Db.x, Db.y, Db.z)表示整个block中每行有Db.x个thread,每列有Db.y个thread,高度为Db.z。Db.x和Db.y最大值为512,Db.z最大值为62。 一个block中共有Db.x*Db.y*Db.z个thread。计算能力为1.0,1.1的硬件该乘积的最大值为768,计算能力为1.2,1.3的硬件支持的最大值为1024- Ns 的类型为 size_t,用于设置每个block除了静态分配的shared Memory以外,最多能动态分配的shared memory大小,单位为byte。不需要动态分配时该值为0或省略不写。如[__shared__](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared)中所述,此动态分配的内存由声明为外部数组的任何变量使用; 
- 参数S是一个cudaStream_t类型的可选参数,初始值为零,表示该核函数处在哪个流之中。
  • CUDA编程中,默认使用默认流非并行执行kernel,每个kernel由许多thread并行的执行在GPU上。Stream的概念是相对Grid level来说的,使得kernel在一个device上同时执行。
    https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

  • 官方提供的用例

// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
// 以下代码示例将其中每个流定义为从主机到设备的一个内存副本、一个内核启动和一个从设备到主机的内存副本的序列:
for (int i = 0; i < 2; ++i) {cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,size, cudaMemcpyHostToDevice, stream[i]);MyKernel <<<100, 512, 0, stream[i]>>>(outputDevPtr + i * size, inputDevPtr + i * size, size);cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,size, cudaMemcpyDeviceToHost, stream[i]);
}
// 通过调用 释放流
for (int i = 0; i < 2; ++i)cudaStreamDestroy(stream[i]);

PyTorch Stream

  • 在PyTorch中,默认情况下,GPU上的操作是在默认流(default stream)中执行的。默认流是一个序列化的流,其中的操作按照它们出现的顺序逐个执行。这意味着在没有显式指定其他流的情况下,所有的操作都会在默认流中执行。

  • 然而,PyTorch还提供了功能可以将操作提交到其他流中执行,以充分利用GPU的并行性。这对于并行处理多个任务或同时执行多个独立操作非常有用。

  • 您可以使用torch.cuda.Stream()来创建其他流,并使用torch.cuda.current_stream()来获取当前流。然后,您可以将操作提交到指定的流中执行,例如:

import torchdevice = torch.device('cuda')# 创建一个默认流
default_stream = torch.cuda.current_stream()# 创建一个自定义流
custom_stream = torch.cuda.Stream()# 在默认流中执行操作
with torch.cuda.stream(default_stream):# 执行操作...# 在自定义流中执行操作
with torch.cuda.stream(custom_stream):# 执行操作...

例子

import torch
s1 = torch.cuda.Stream()
s2 = torch.cuda.Stream()
# Initialise cuda tensors here. E.g.:
A = torch.rand(1000, 1000, device = 'cuda')
B = torch.rand(1000, 1000, device = 'cuda')
# Wait for the above tensors to initialise.
torch.cuda.synchronize()
with torch.cuda.stream(s1):C = torch.mm(A, A)
with torch.cuda.stream(s2):D = torch.mm(B, B)
# Wait for C and D to be computed.
torch.cuda.synchronize()
# Do stuff with C and D.
print(C)
print(D)
// https://stackoverflow.com/questions/70128833/why-and-when-to-use-torch-cuda-stream

这样可以利用多个流来并行执行计算,并在计算和数据传输之间实现重叠。这对于提高GPU利用率和加速训练或推理过程非常有帮助。

错误示例

  • 没有使用 synchronize() 或者 wait_stream()进行同步,可能导致再未完成归一化前执行求和
// https://pytorch.org/docs/stable/notes/cuda.html
cuda = torch.device('cuda')
s = torch.cuda.Stream()  # Create a new stream.
A = torch.empty((100, 100), device=cuda).normal_(0.0, 1.0)
with torch.cuda.stream(s):# sum() may start execution before normal_() finishes!B = torch.sum(A)

CG

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

  • https://pytorch.org/docs/stable/notes/cuda.html#multistream-capture

  • https://pytorch.org/cppdocs/notes/tensor_cuda_stream.html

  • https://pypi.org/project/pytorch-stream/

  • CUDA 的 Stream and Event https://zhuanlan.zhihu.com/p/369367933

  • GITHUBGIST Gist就是小型代码片段的分享https://www.cnblogs.com/leader755/p/14284716.html

  • [JIT] 在 TorchScript 中支持 CUDA 流 https://github.com/pytorch/pytorch/issues/41355

  • https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics

  • https://github.com/pytorch/pytorch/issues/41355

多设备

// https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics
cuda = torch.device('cuda')     # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2')  # GPU 2 (these are 0-indexed)x = torch.tensor([1., 2.], device=cuda0)
# x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
# y.device is device(type='cuda', index=0)with torch.cuda.device(1):# allocates a tensor on GPU 1a = torch.tensor([1., 2.], device=cuda)# transfers a tensor from CPU to GPU 1b = torch.tensor([1., 2.]).cuda()# a.device and b.device are device(type='cuda', index=1)# You can also use ``Tensor.to`` to transfer a tensor:b2 = torch.tensor([1., 2.]).to(device=cuda)# b.device and b2.device are device(type='cuda', index=1)c = a + b# c.device is device(type='cuda', index=1)z = x + y# z.device is device(type='cuda', index=0)# even within a context, you can specify the device# (or give a GPU index to the .cuda call)d = torch.randn(2, device=cuda2)e = torch.randn(2).to(cuda2)f = torch.randn(2).cuda(cuda2)# d.device, e.device, and f.device are all device(type='cuda', index=2)
http://www.yayakq.cn/news/729612/

相关文章:

  • 网站左侧导航源码wordpress单栏主题 极简
  • 网站改版是否有影响免费photoshop下载
  • 网站改域名备案吗校园网认证登录入口
  • 网站维护需要有没有专门做外包销售的公司
  • 昆明网站建设搜王道下拉推广策略图片
  • 52做网站网站推广方法主要有哪几种
  • 无锡企业网站制作哪家好怎么在jsp网站做验证码
  • 揭阳网站建设方案托管网页版微信怎么加好友
  • 做货代用的网站网站建设 昆山
  • 厚街网站建设多少钱里水网站开发
  • 专业网站设计联系方式可信网站认证服务商
  • 网站开发软件wordpress侧栏导航栏
  • 企业网站推广可以选择哪些方法python做网站方便吗
  • aspx网站 整站抓取购物网站制作实例
  • 云南网站建设价格低网站后台上传图片做难吗
  • 德阳建设机械网站深圳商标注册公司
  • 上上海海网网站站建设网站面包屑导航
  • 我的网站被黑了网站推广营销策略
  • 大城网站建设小程序短链接生成
  • 比较好的平面设计网站wordpress 启用gzip
  • 怎么使自己的网站哪些网站建设公司好
  • 怎么创建网站挣钱网上购物网站建设公司
  • 有没有教做网站的app网站界面设计中的布局设计要注意什么的结合
  • wordpress 自定义feed网站导航优化
  • 响应式网站开发pdf广告优化师是做什么的
  • 免费的网站程序哪里好小说网站系统怎么做
  • 注册公司网站怎么做企业做网站域名需要自己申请吗
  • 政务移动门户网站建设潍坊网站制作在线
  • 一家做特卖的网站做全屏网站设计时容易犯的错
  • 网站建设的公司业务网站建设流程ppt