当前位置: 首页 > news >正文

高明网站开发网站设计第一步怎么做

高明网站开发,网站设计第一步怎么做,银川哪里做网站,淘宝推广平台有哪些A. 最终效果 B. 背景说明 DBGPT在0.5.6版本中开始支持Ollama:v0.5.6 版本更新 网友对其Web端及界面端的设置进行了分享: feat(model): support ollama as an optional llm & embedding proxy by GITHUBear Pull Request #1475 eosphoros-ai/DB-G…

A. 最终效果

在这里插入图片描述

B. 背景说明

  • DBGPT在0.5.6版本中开始支持Ollama:v0.5.6 版本更新
    在这里插入图片描述

  • 网友对其Web端及界面端的设置进行了分享:

    • feat(model): support ollama as an optional llm & embedding proxy by GITHUBear · Pull Request #1475 · eosphoros-ai/DB-GPT
    • DB-GPT+Ollama构建本地智能数据平台_db-gpt ollama-CSDN博客

在这里插入图片描述

C. 环境配置

  • 参考官网教程完成环境配置
    在这里插入图片描述

D. 配置文件

  • ⚠️:注意下面带⭐️的操作
#*******************************************************************#
#**             DB-GPT  - GENERAL SETTINGS                        **#  
#*******************************************************************##*******************************************************************#
#**                        Webserver Port                         **#
#*******************************************************************#
# DBGPT_WEBSERVER_PORT=5670
## Whether to enable the new web UI, enabled by default,False use old ui
# USE_NEW_WEB_UI=True
#*******************************************************************#
#***                       LLM PROVIDER                          ***#
#*******************************************************************## TEMPERATURE=0#*******************************************************************#
#**                         LLM MODELS                            **#
#*******************************************************************#
# ⭐️ 添加Ollama配置
LLM_MODEL=ollama_proxyllm
PROXY_SERVER_URL=http://127.0.0.1:11434
PROXYLLM_BACKEND="qwen2:1.5b"
PROXY_API_KEY=not_used
EMBEDDING_MODEL=proxy_ollama
proxy_ollama_proxy_server_url=http://127.0.0.1:11434
proxy_ollama_proxy_backend="nomic-embed-text:latest"# LLM_MODEL=ollama_proxyllm
# MODEL_SERVER=http://127.0.0.1:11434
# PROXYLLM_BACKEND=llama3.1:8b
# EMBEDDING_MODEL=proxy_ollama
# proxy_ollama_proxy_server_url=http://127.0.0.1:11434
# proxy_ollama_proxy_backend=llama3.1:8b# LLM_MODEL=ollama_proxyllm
# PROXY_SERVER_URL=http://127.0.0.1:11434
# PROXYLLM_BACKEND="qwen:0.5b" 
# PROXY_API_KEY=not_used 
# EMBEDDING_MODEL=proxy_ollama 
# proxy_ollama_proxy_server_url=http://127.0.0.1:11434 
# proxy_ollama_proxy_backend="nomic-embed-text:latest"   # # LLM_MODEL, see dbgpt/configs/model_config.LLM_MODEL_CONFIG
# LLM_MODEL=glm-4-9b-chat
# ## LLM model path, by default, DB-GPT will read the model path from LLM_MODEL_CONFIG based on the LLM_MODEL.
# ## Of course you can specify your model path according to LLM_MODEL_PATH
# ## In DB-GPT, the priority from high to low to read model path:
# ##    1. environment variable with key: {LLM_MODEL}_MODEL_PATH (Avoid multi-model conflicts)
# ##    2. environment variable with key: MODEL_PATH
# ##    3. environment variable with key: LLM_MODEL_PATH
# ##    4. the config in dbgpt/configs/model_config.LLM_MODEL_CONFIG
# # LLM_MODEL_PATH=/app/models/glm-4-9b-chat
# # LLM_PROMPT_TEMPLATE=vicuna_v1.1
# MODEL_SERVER=http://127.0.0.1:8000
# LIMIT_MODEL_CONCURRENCY=5
# MAX_POSITION_EMBEDDINGS=4096
# QUANTIZE_QLORA=True
# QUANTIZE_8bit=True
# # QUANTIZE_4bit=False
# ## SMART_LLM_MODEL - Smart language model (Default: vicuna-13b)
# ## FAST_LLM_MODEL - Fast language model (Default: chatglm-6b)
# # SMART_LLM_MODEL=vicuna-13b
# # FAST_LLM_MODEL=chatglm-6b
# ## Proxy llm backend, this configuration is only valid when "LLM_MODEL=proxyllm", When we use the rest API provided by deployment frameworks like fastchat as a proxyllm, 
# ## "PROXYLLM_BACKEND" is the model they actually deploy. We can use "PROXYLLM_BACKEND" to load the prompt of the corresponding scene. 
# # PROXYLLM_BACKEND=# ### You can configure parameters for a specific model with {model name}_{config key}=xxx
# ### See dbgpt/model/parameter.py
# ## prompt template for current model
# # llama_cpp_prompt_template=vicuna_v1.1
# ## llama-2-70b must be 8
# # llama_cpp_n_gqa=8
# ## Model path
# # llama_cpp_model_path=/data/models/TheBloke/vicuna-13B-v1.5-GGUF/vicuna-13b-v1.5.Q4_K_M.gguf# ### LLM cache
# ## Enable Model cache
# # MODEL_CACHE_ENABLE=True
# ## The storage type of model cache, now supports: memory, disk
# # MODEL_CACHE_STORAGE_TYPE=disk
# ## The max cache data in memory, we always store cache data in memory fist for high speed. 
# # MODEL_CACHE_MAX_MEMORY_MB=256
# ## The dir to save cache data, this configuration is only valid when MODEL_CACHE_STORAGE_TYPE=disk
# ## The default dir is pilot/data/model_cache
# # MODEL_CACHE_STORAGE_DISK_DIR=#*******************************************************************#
#**                         EMBEDDING SETTINGS                    **#
#*******************************************************************#
# ⭐️ 取消非Ollama的Embedding设置
# EMBEDDING_MODEL=text2vec
# #EMBEDDING_MODEL=m3e-large
# #EMBEDDING_MODEL=bge-large-en
# #EMBEDDING_MODEL=bge-large-zh
# KNOWLEDGE_CHUNK_SIZE=500
# KNOWLEDGE_SEARCH_TOP_SIZE=5
# KNOWLEDGE_GRAPH_SEARCH_TOP_SIZE=200
# ## Maximum number of chunks to load at once, if your single document is too large,
# ## you can set this value to a higher value for better performance.
# ## if out of memory when load large document, you can set this value to a lower value.
# # KNOWLEDGE_MAX_CHUNKS_ONCE_LOAD=10
# #KNOWLEDGE_CHUNK_OVERLAP=50
# # Control whether to display the source document of knowledge on the front end.
# KNOWLEDGE_CHAT_SHOW_RELATIONS=False
# # Whether to enable Chat Knowledge Search Rewrite Mode
# KNOWLEDGE_SEARCH_REWRITE=False
# ## EMBEDDING_TOKENIZER   - Tokenizer to use for chunking large inputs
# ## EMBEDDING_TOKEN_LIMIT - Chunk size limit for large inputs
# # EMBEDDING_MODEL=all-MiniLM-L6-v2
# # EMBEDDING_TOKENIZER=all-MiniLM-L6-v2
# # EMBEDDING_TOKEN_LIMIT=8191# ## Openai embedding model, See dbgpt/model/parameter.py
# # EMBEDDING_MODEL=proxy_openai
# # proxy_openai_proxy_server_url=https://api.openai.com/v1
# # proxy_openai_proxy_api_key={your-openai-sk}
# # proxy_openai_proxy_backend=text-embedding-ada-002# ## qwen embedding model, See dbgpt/model/parameter.py
# # EMBEDDING_MODEL=proxy_tongyi
# # proxy_tongyi_proxy_backend=text-embedding-v1
# # proxy_tongyi_proxy_api_key={your-api-key}# ## qianfan embedding model, See dbgpt/model/parameter.py
# #EMBEDDING_MODEL=proxy_qianfan
# #proxy_qianfan_proxy_backend=bge-large-zh
# #proxy_qianfan_proxy_api_key={your-api-key}
# #proxy_qianfan_proxy_api_secret={your-secret-key}# ## Common HTTP embedding model
# # EMBEDDING_MODEL=proxy_http_openapi
# # proxy_http_openapi_proxy_server_url=http://localhost:8100/api/v1/embeddings
# # proxy_http_openapi_proxy_api_key=1dce29a6d66b4e2dbfec67044edbb924
# # proxy_http_openapi_proxy_backend=text2vec#*******************************************************************#
#**                         RERANK SETTINGS                       **#
#*******************************************************************#
## Rerank model
# RERANK_MODEL=bge-reranker-base
## If you not set RERANK_MODEL_PATH, DB-GPT will read the model path from EMBEDDING_MODEL_CONFIG based on the RERANK_MODEL.
# RERANK_MODEL_PATH=
## The number of rerank results to return
# RERANK_TOP_K=3## Common HTTP rerank model
# RERANK_MODEL=rerank_proxy_http_openapi
# rerank_proxy_http_openapi_proxy_server_url=http://127.0.0.1:8100/api/v1/beta/relevance
# rerank_proxy_http_openapi_proxy_api_key={your-api-key}
# rerank_proxy_http_openapi_proxy_backend=bge-reranker-base#*******************************************************************#
#**                  DB-GPT METADATA DATABASE SETTINGS            **#
#*******************************************************************#
### SQLite database (Current default database)
LOCAL_DB_TYPE=sqlite### MYSQL database
# LOCAL_DB_TYPE=mysql
# LOCAL_DB_USER=root
# LOCAL_DB_PASSWORD={your_password}
# LOCAL_DB_HOST=127.0.0.1
# LOCAL_DB_PORT=3306
# LOCAL_DB_NAME=dbgpt
### This option determines the storage location of conversation records. The default is not configured to the old version of duckdb. It can be optionally db or file (if the value is db, the database configured by LOCAL_DB will be used)
#CHAT_HISTORY_STORE_TYPE=db#*******************************************************************#
#**                         COMMANDS                              **#
#*******************************************************************#
EXECUTE_LOCAL_COMMANDS=False#*******************************************************************#
#**            VECTOR STORE / KNOWLEDGE GRAPH SETTINGS            **#
#*******************************************************************#
VECTOR_STORE_TYPE=Chroma
GRAPH_STORE_TYPE=TuGraph
GRAPH_COMMUNITY_SUMMARY_ENABLED=True
KNOWLEDGE_GRAPH_EXTRACT_SEARCH_TOP_SIZE=5
KNOWLEDGE_GRAPH_EXTRACT_SEARCH_RECALL_SCORE=0.3
KNOWLEDGE_GRAPH_COMMUNITY_SEARCH_TOP_SIZE=20
KNOWLEDGE_GRAPH_COMMUNITY_SEARCH_RECALL_SCORE=0.0### Chroma vector db config
#CHROMA_PERSIST_PATH=/root/DB-GPT/pilot/data### Milvus vector db config
#VECTOR_STORE_TYPE=Milvus
#MILVUS_URL=127.0.0.1
#MILVUS_PORT=19530
#MILVUS_USERNAME
#MILVUS_PASSWORD
#MILVUS_SECURE=### Weaviate vector db config
#VECTOR_STORE_TYPE=Weaviate
#WEAVIATE_URL=https://kt-region-m8hcy0wc.weaviate.network## ElasticSearch vector db config
#VECTOR_STORE_TYPE=ElasticSearch
ElasticSearch_URL=127.0.0.1
ElasticSearch_PORT=9200
ElasticSearch_USERNAME=elastic
ElasticSearch_PASSWORD={your_password}### TuGraph config
#TUGRAPH_HOST=127.0.0.1
#TUGRAPH_PORT=7687
#TUGRAPH_USERNAME=admin
#TUGRAPH_PASSWORD=73@TuGraph
#TUGRAPH_VERTEX_TYPE=entity
#TUGRAPH_EDGE_TYPE=relation
#TUGRAPH_PLUGIN_NAMES=leiden#*******************************************************************#
#**                  WebServer Language Support                   **#
#*******************************************************************#
# en, zh, fr, ja, ko, ru
LANGUAGE=en
#LANGUAGE=zh#*******************************************************************#
# **    PROXY_SERVER (openai interface | chatGPT proxy service), use chatGPT as your LLM.
# ⭐️ 注释掉Ollama之外的PROXY_SERVER_URL
# ** if your server can visit openai, please set PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
# ** else if you have a chatgpt proxy server, you can set PROXY_SERVER_URL={your-proxy-serverip:port/xxx}
#*******************************************************************#
# PROXY_API_KEY={your-openai-sk}
# PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions# # from https://bard.google.com/     f12-> application-> __Secure-1PSID
# BARD_PROXY_API_KEY={your-bard-token}#*******************************************************************#
# **  PROXY_SERVER +                                              **#
#*******************************************************************## Aliyun tongyi
TONGYI_PROXY_API_KEY={your-tongyi-sk}## Baidu wenxin
#WEN_XIN_MODEL_VERSION={version}
#WEN_XIN_API_KEY={your-wenxin-sk}
#WEN_XIN_API_SECRET={your-wenxin-sct}## Zhipu
#ZHIPU_MODEL_VERSION={version}
#ZHIPU_PROXY_API_KEY={your-zhipu-sk}## Baichuan
#BAICHUN_MODEL_NAME={version}
#BAICHUAN_PROXY_API_KEY={your-baichuan-sk}
#BAICHUAN_PROXY_API_SECRET={your-baichuan-sct}# Xunfei Spark
#XUNFEI_SPARK_API_VERSION={version}
#XUNFEI_SPARK_APPID={your_app_id}
#XUNFEI_SPARK_API_KEY={your_api_key}
#XUNFEI_SPARK_API_SECRET={your_api_secret}## Yi Proxyllm, https://platform.lingyiwanwu.com/docs
#YI_MODEL_VERSION=yi-34b-chat-0205
#YI_API_BASE=https://api.lingyiwanwu.com/v1
#YI_API_KEY={your-yi-api-key}## Moonshot Proxyllm, https://platform.moonshot.cn/docs/
# MOONSHOT_MODEL_VERSION=moonshot-v1-8k
# MOONSHOT_API_BASE=https://api.moonshot.cn/v1
# MOONSHOT_API_KEY={your-moonshot-api-key}## Deepseek Proxyllm, https://platform.deepseek.com/api-docs/
# DEEPSEEK_MODEL_VERSION=deepseek-chat
# DEEPSEEK_API_BASE=https://api.deepseek.com/v1
# DEEPSEEK_API_KEY={your-deepseek-api-key}#*******************************************************************#
#**    SUMMARY_CONFIG                                             **#
#*******************************************************************#
SUMMARY_CONFIG=FAST#*******************************************************************#
#**    MUlti-GPU                                                  **#
#*******************************************************************#
## See https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/
## If CUDA_VISIBLE_DEVICES is not configured, all available gpus will be used
# CUDA_VISIBLE_DEVICES=0
## You can configure the maximum memory used by each GPU.
# MAX_GPU_MEMORY=16Gib#*******************************************************************#
#**                         LOG                                   **#
#*******************************************************************#
# FATAL, ERROR, WARNING, WARNING, INFO, DEBUG, NOTSET
DBGPT_LOG_LEVEL=INFO
# LOG dir, default: ./logs
#DBGPT_LOG_DIR=#*******************************************************************#
#**                         API_KEYS                              **#
#*******************************************************************#
# API_KEYS - The list of API keys that are allowed to access the API. Each of the below are an option, separated by commas.
# API_KEYS=dbgpt#*******************************************************************#
#**                         ENCRYPT                               **#
#*******************************************************************#
# ENCRYPT KEY - The key used to encrypt and decrypt the data
# ENCRYPT_KEY=your_secret_key#*******************************************************************#
#**                         File Server                           **#
#*******************************************************************#
## The local storage path of the file server, the default is pilot/data/file_server
# FILE_SERVER_LOCAL_STORAGE_PATH =#*******************************************************************#
#**                     Application Config                        **#
#*******************************************************************#
## Non-streaming scene retries
# DBGPT_APP_SCENE_NON_STREAMING_RETRIES_BASE=1
## Non-streaming scene parallelism
# DBGPT_APP_SCENE_NON_STREAMING_PARALLELISM_BASE=1#*******************************************************************#
#**                   Observability Config                        **#
#*******************************************************************#
## Whether to enable DB-GPT send trace to OpenTelemetry
# TRACER_TO_OPEN_TELEMETRY=False
## Following configurations are only valid when TRACER_TO_OPEN_TELEMETRY=True
## More details see https://opentelemetry-python.readthedocs.io/en/latest/exporter/otlp/otlp.html
# OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=http://localhost:4317
# OTEL_EXPORTER_OTLP_TRACES_INSECURE=False
# OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE=
# OTEL_EXPORTER_OTLP_TRACES_HEADERS=
# OTEL_EXPORTER_OTLP_TRACES_TIMEOUT=
# OTEL_EXPORTER_OTLP_TRACES_COMPRESSION=#*******************************************************************#
#**                     FINANCIAL CHAT Config                     **#
#*******************************************************************#
# FIN_REPORT_MODEL=/app/models/bge-large-zh
  • 错误排查

在这里插入图片描述

E. 运行使用

E.1 启动
python dbgpt/app/dbgpt_server.py
E.2 使用

在这里插入图片描述

F. 引文出处的设置

在新版本中,引文出处转移到了应用,通过创建应用绑定知识库,然后在应用里面对话后就会显示出处。

F.1 点击创建应用

在这里插入图片描述

在这里插入图片描述

F.2 绑定知识库

在这里插入图片描述

F.3 选择应用

在这里插入图片描述

F.4对话引文查看

在这里插入图片描述

http://www.yayakq.cn/news/536031/

相关文章:

  • 中亿丰建设集团股份有限公司官方网站站长之家seo查询
  • 网站开发技术描述百度竞价推广收费
  • 网站上线后想修改微信链接怎么wordpress
  • 做网站备案的公司在线一键免费生成网页网站
  • 下载网站如何做无人在线观看高清视频8
  • 看到网站的第一印象网站设计开发维护
  • 悦然wordpress建站服务门户网站建设方案模板
  • 开发一个软件需要seo网站推广的主要目的是什么
  • 赤坎网站开发公司人社部门网站建设
  • 网站设计模板免费建站昆山城乡建设局网站
  • 做高仿包的能做网站吗江苏省建设厅八大员考试报名网站
  • 企业网站建设费用 珠海怎样登网站
  • 女的男的做那个视频网站多语言外贸网站制作
  • 门户网站系统建设方案怎么做网站二级页面
  • 哪里可以免费申请空间 注册域名 申请网站北京王府井书店网上商城
  • 福州阿里巴巴网站建设做家纺网站哪家好
  • 上海 食品网站设计seo百度百科
  • 广州微网站建设dmz100镇江建站
  • 汕头网站建设制作报价从做系统后以前的网站打不开了
  • 网站 建设 现状小程序商城开发
  • 一级页面的网站怎么做ui界面设计尺寸
  • 为了 门户网站建设网站设计与网站建设
  • 网站开发郑州做写字楼用哪个网站更好
  • 多个wordpress站点同步大学培训中心网站建设
  • 佛山微信网站建设多少钱常州企业名录黄页
  • 河北住房和城乡建设厅网站驱动四川专业网络推广
  • 成都有哪些做网站的腾讯云主机
  • 现在互联网有什么平台可以做东莞企业网站优化
  • 网站建设与维护 技能网站添加地图
  • 上海 网站建设 外包怎么做dnf辅助网站