当前位置: 首页 > news >正文

网站网页设计在哪找百度高级搜索

网站网页设计在哪找,百度高级搜索,做网站的工作好做吗,施工企业发展的建议前言 选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考 …

前言

选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考

任务1

修改test.py的task_one()函数,对task1.jpg进行去噪处理,处理结果保存为task1_proc.jpg

提示:请观察分析task1.jpg的噪声特点,并选择合适的处理方法
请添加图片描述

def task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)

效果如下:
请添加图片描述

任务2

修改test.py的task_two()函数,对task2.jpg进行去噪处理,处理结果保存为task2_proc.jpg

提示:请观察分析task2.jpg的噪声特点,并选择合适的处理方法

请添加图片描述

def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)

效果如下:
请添加图片描述

任务3

修改test.py的task_three()函数,对task3.jpg进行去噪处理,处理结果保存为task3_proc.jpg

提示:task3.jpg中的噪声为y轴方向的周期噪声,周期为图像高度(height)的1/10

请添加图片描述

这个不会做,弄了半天

def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)

效果和原图没啥区别。。。
请添加图片描述

源代码:

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 14:51:59 2023@author: cai-mj
"""import numpy as np
import cv2
from matplotlib import pyplot as pltdef task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)if __name__ == '__main__':task_one()task_two()task_three()
http://www.yayakq.cn/news/311097/

相关文章:

  • 行业论坛网站高校财务网站建设
  • 株洲网络营销推广哪家好太原seo排名收费
  • 网站建设自我介绍网页设计大赛作品欣赏
  • 哈尔滨网站建设q479185700惠舒城县住房和城乡建设局网站
  • 福建网站优化石家庄网站推广招聘
  • 西安旅游网站开发成全视频免费观看在线看第6季高清版
  • 小辰青岛网站建设定制类网站
  • 在哪几个网站里可以做淘客如何建网站并做推广
  • 苏州网络营销网站建设平台番禺建设局网站首页
  • 自适应网站案例wordpress调用文章id
  • 网站设计免费模板新版爱美眉网站源码
  • 哪个网站可以做淘宝代码网站功能怎么写
  • 网站设计中的用户体验网络营销师报考条件
  • 网站建设 顺德wordpress官使用方法
  • 建设校园网站怎么查看网站根目录
  • 什么是可信网站电器网站建设
  • 一屏一屏的网站怎么做本网站仅支持ie浏览器
  • 看摄影作品的网站中国广告网
  • 四川建设网电子招投标网站阿里网站年费续费怎么做分录
  • 网站开发计入会计 什么科目长沙制作公园仿竹护栏实体厂家
  • 网站建设 服务器 预算报价清单竞价恶意点击报案
  • 如何建立网站是什么东莞横沥镇属于哪个区
  • 建设部注册监理工程师网站随州网站建设哪家专业
  • 在哪个网站找婚照公司网站建设中请稍后再访问
  • 哈尔滨市做网站公司wordpress 展开折叠
  • 个人域名可以做网站吗Wordpress 模块wordkey
  • 天津做网站.都找津坤科技茶的网站制作
  • 设计企业公司网站access如何与网站连接数据库
  • 互联网设计公司网站百度关键词排名查询
  • 目前做哪个网站能致富做网站需要先买域名吗