当前位置: 首页 > news >正文

化妆品网站开发asp.net网站恢复

化妆品网站开发,asp.net网站恢复,网站建设课程有哪些收获,定制化开发递归型枚举与回溯剪枝初识 1.枚举子集2.组合型枚举3.枚举排列4.全排列问题 什么是搜索?搜索,是一种枚举,通过穷举所有的情况来找到最优解,或者统计合法解的个数。因此,搜索有时候也叫作暴搜。搜索一般分为深度优先搜索…

递归型枚举与回溯剪枝初识

  • 1.枚举子集
  • 2.组合型枚举
  • 3.枚举排列
  • 4.全排列问题

  1. 什么是搜索?搜索,是一种枚举,通过穷举所有的情况来找到最优解,或者统计合法解的个数。因此,搜索有时候也叫作暴搜。搜索一般分为深度优先搜索(DFS)与宽度优先搜索(BFS)。
  2. 深度优先遍历 vs 深度优先搜索,宽度优先遍历 vs 宽度优先搜索。遍历是形式,搜索是目的。不过,在一般情况下,我们不会去纠结概念的差异,两者可以等同。
  3. 回溯与剪枝
  • 回溯:当在搜索的过程中,遇到走不通或者走到底的情况时,就回头。
  • 剪枝:在搜索过程中,剪掉重复出现或者不是最优解的分。

递归型枚举与回溯剪枝初识:

  • 画决策树
  • 根据决策树写递归

搜索的本质:对决策树进行一次遍历,直到将所有的情况搜集到为止。

1.枚举子集

B3622 枚举子集(递归实现指数型枚举)

在这里插入图片描述

解法:深搜

设一共有 3 人,分别是 1,2,3。「从前往后」考虑每一个人,针对当前这个人「选」或者「不选」,我们可以画出如下「决策树」:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:针对某一位,「选」或者「不选」。因为最终结果要按照「字典序」输出,我们可以「先考虑不选」,然后「再考虑选」。
  2. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<string>
using namespace std;const int N = 11;int n;
string path; //记录递归过程中,每⼀步的决策void dfs()
{if(path.size() == n){cout << path << endl; //path存着前n个⼈的决策 return;}//不选path += 'N';dfs();path.pop_back(); //回溯:恢复现场//选path += 'Y';dfs(); path.pop_back(); //回溯:恢复现场
}int main()
{cin >> n;dfs();return 0;
}

2.组合型枚举

P10448 组合型枚举

在这里插入图片描述

解法:深搜

设 n = 4, m = 3,「从前往后」考虑 3 个位置应该选哪个数,我们可以画出如下决策树:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:当前这一位,应该放哪个数上去。因为这是一个「组合」问题,不涉及排列,所以我们当前位置开始放的数,应该是「上次决策的数的下一位」。
  2. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<vector>
using namespace std;int n, m;
vector<int> path; //记录递归过程中,每⼀步的决策void dfs(int pos)
{if(path.size() == m){for(auto& e : path) cout << e << " ";cout << endl;return;}for(int i = pos; i <= n; i++){path.push_back(i);dfs(i + 1);path.pop_back(); //回溯:恢复现场}
}int main()
{cin >> n >> m;dfs(1);return 0;
}

3.枚举排列

B3623 枚举排列(递归实现排列型枚举)

在这里插入图片描述

解法:深搜

设 n = 3, k = 2,一共要选出两个数,可以依次「考虑要选出来的数」是谁,画出如下决策树:

在这里插入图片描述

设计递归函数:

  1. 重复子问题:考虑这一位要放上什么数。因为是「排列」问题,所以我们直接从 1 开始枚举要放的数。
  2. 剪枝:在这一条路径中,我们「不能选择之前已经选择过的数」,需要用到辅助数组
  3. 实现方式参考代码和注释,结合「决策树」一起看会很清晰。
#include<iostream>
#include<vector>
using namespace std;const int N = 15;int n, k;
vector<int> path; //记录递归过程中,每⼀步的决策
bool vis[N]; //辅助数组:标记哪些数已经选过 void dfs()
{if(path.size() == k){for(auto& e : path) cout << e << " ";cout << endl;return;}for(int i = 1; i <= n; i++){if(vis[i] == false){vis[i] = true;path.push_back(i);dfs();//回溯:恢复现场path.pop_back();vis[i] = false;}}
}int main()
{cin >> n >> k;dfs();return 0;
}

4.全排列问题

P1706 全排列问题

在这里插入图片描述

解法:深搜

跟上一道题的决策一样,我们可以枚举每一位应该放上什么数,只不过少了 k 的限制。剪枝的策略还是一样的,那就是在路径中,「不能选择之前已经选过的数」。

在这里插入图片描述

#include<iostream>
#include<vector>
using namespace std;const int N = 15;int n;
vector<int> path; //记录递归过程中,每⼀步的决策
bool vis[N]; //辅助数组:标记哪些数已经选过void dfs()
{if(path.size() == n){for(auto& e : path) printf("%5d", e);cout << endl;return;}for(int i = 1; i <= n; i++){if(vis[i] == false){vis[i] = true;path.push_back(i);dfs();//回溯:恢复现场path.pop_back();vis[i] = false;}}
}int main()
{cin >> n;dfs();return 0;
}
http://www.yayakq.cn/news/432411/

相关文章:

  • 成都网站建设 川icp备博客软件 WordPress等
  • 同学会网站建设方案凡科网站案例
  • 珠海电子商务网站建设厂家高端网站设计地址
  • 团购网站制作wordpress文章分栏
  • 一家专门做原型的网站商户后台管理系统
  • 免费网站推广工具长沙别墅图纸网站建设
  • 网站标题字体设计昆明网站制作内容
  • 网站建设语录创建网站的ip地址怎么获得
  • 个人网站的投稿平台贵阳建设企业网站
  • 了解网站建设管理wordpress缩略图外链
  • 廊坊市安次区建设局网站软件技术好找工作吗
  • wordpress入门建站教程温州网站推广效果
  • 建德网站优化公司备案 网站语言
  • 阿里巴巴能拿货在家里做的网站哪些网站是做数据分析的
  • 南通网站建设找哪家好mui做网站
  • 无锡高端网站建设平台重庆万州网站建设找谁
  • asp.net网站加速公司企业邮箱是什么
  • 网站建设要学什么1688网站可以做全屏吗
  • 阴阳师网站怎么做照片书哪个网站做的好
  • 东莞网络推广招聘陕西seo顾问服务
  • 做家务的男人们在哪个网站播出站长之家whois查询
  • 清远公司网站建设东京购物
  • 11年始终专注营销型网站手机网站弹出层插件有哪些
  • 中国公路建设行业协会网站上推广注册app赚钱平台
  • 付网站开发费用要计入什么科目如何优化一个网站
  • 商城网站前期seo应该怎么做哈密网站建设公司哪家专业
  • 沧州网站建设专业定制做赌场网站犯法么
  • 做公众号策划的网站做网站 找风投
  • 企业网站推广排名网站自定义链接怎么做的
  • 钢丝高频退火设备网站建设有关做美食的网站