当前位置: 首页 > news >正文

山东滨州有多少网站开发公司红豆梧州论坛

山东滨州有多少网站开发公司,红豆梧州论坛,抓好网站建设工作,手机网页打不开但是有网什么原因目录 离散无记忆信道输入概率输出概率联合分布概率信道逆向概率一些记号示例1示例2 离散无记忆信道 离散:输入输出字母表都是有限的 无记忆:输出字符 d i d_i di​ 被接收到的概率只依赖于当前的输入 c i c_i ci​, 而与前面的输入无关。 一个离散无记…

目录

  • 离散无记忆信道
  • 输入概率
  • 输出概率
  • 联合分布概率
  • 信道逆向概率
  • 一些记号
  • 示例1
  • 示例2

离散无记忆信道

离散:输入输出字母表都是有限的
无记忆:输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。

一个离散无记忆信道由输入字母表 S = { x 1 \mathcal{S} = \{ x_1 S={x1, ⋯ \cdots , x s } x_s\} xs}和输出字母表 Q = { y 1 \mathcal{Q} = \{ y_1 Q={y1, ⋯ \cdots , y t } y_t\} yt} 以及一系列信道概率 p ( y j ( y_j (yj| x i ) x_i) xi) 组成,其中信道概率满足条件:对任意 1 ≤ 1\leq 1i ≤ \leq s,

∑ j = 1 t p ( y j ∣ x i ) = 1. \sum_{\mathrm{j=1}}^\mathrm{t}\mathrm{p(y_j|x_i)=1.} j=1tp(yjxi)=1.

直观地,可以把 p ( y j ( y_{j} (yj| x i x_{i} xi) 当 成 通 过 该 信 道 发 送 x i x_{i} xi 时,接收到 y j _\mathrm{j~} j 的概
率。
上述定义中离散的意思是指输入输出字母表都是有限的,而无记忆的意思是指输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。
还要注意到离散无记忆信道定义中的时间位置的独立性,也就是通过信道传输一个字符发生错误的概率跟发送的时间以及该字符在码字中的位置无关。

进一步,如果 ( c 1 ( c_1 (c1, ⋯ \cdots , c n c_n cn) 和 ( d 1 ( d_1 (d1, ⋯ \cdots , d n d_n dn) 分别是字母表 S S S和字母表 Q Q Q 上的长度为 n 的码字,那么通过信道发送 c = ( c 1 , ⋯ , c n ) =(\mathfrak{c}_1,\cdots,\mathfrak{c}_{\mathfrak{n}}) =(c1,,cn)时,接收到d = ( d 1 , ⋯ , d n ) =(\mathrm{d}_1,\cdots,\mathrm{d}_{\mathrm{n}}) =(d1,,dn)的概率为
p ( d ∣ c ) = ∏ i = 1 n p ( d i ∣ c i ) . \mathrm{p(d|c)=\prod_{i=1}^np(d_i|c_i).} p(d∣c)=i=1np(dici).



输入概率

因为信道的输入本质上具有概率的特性,所以可以把信道的输入当成随机变量 X 的值,并且其输入概率分布由下式定义

P ( X = x i ) = p ( x i ) . \mathrm{P(X=x_i)=p(x_i).} P(X=xi)=p(xi).



输出概率

每个输入 X 会引发一个输出 Y, 输出概率分布由输入分布和信道概率所确定,即:

P ( Y = y j ) = ∑ i = 1 s p ( y j ∣ x i ) p ( x i ) . \mathrm{P(Y=y_j)=\sum_{i=1}^sp(y_j|x_i)p(x_i).} P(Y=yj)=i=1sp(yjxi)p(xi).


联合分布概率

联合分布律由下式给出:

P ( X = x i , Y = y j ) = p ( y j ∣ x i ) p ( x i ) . \mathrm{P(X=x_i,Y=y_j)=p(y_j|x_i)p(x_i).} P(X=xi,Y=yj)=p(yjxi)p(xi).



信道逆向概率

信道逆向概率定义为

P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) . \mathrm{P(X=x_i|Y=y_j)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}.} P(X=xi∣Y=yj)=P(Y=yj)P(X=xi,Y=yj).



一些记号

为方便起见,会使用一些记号:
p ( x i ) = P ( X = x i ) \mathrm{p(x_i)=P(X=x_i)} p(xi)=P(X=xi)
p ( y j ) = P ( Y = y j ) \mathrm{p(y_j)=P(Y=y_j)} p(yj)=P(Y=yj)
p ( x i , y j ) = P ( X = x i , Y = y j ) \mathrm{p(x_i,y_j)=P(X=x_i,Y=y_j)} p(xi,yj)=P(X=xi,Y=yj)
p ( x i ∣ y j ) = P ( X = x i ∣ Y = y j ) \mathrm{p(x_i|y_j)=P(X=x_i|Y=y_j)} p(xiyj)=P(X=xi∣Y=yj)
p ( y j ∣ x i ) = P ( Y = y j ∣ X = x i ) \mathrm{p(y_j|x_i)=P(Y=y_j|X=x_i)} p(yjxi)=P(Y=yj∣X=xi)



示例1

一个重要的离散无记忆信道是前文用过的二元对称信道,其输入输
出字母表为{0}1}。信道概率为

P ( 0 ∣ 1 ) = P ( 1 ∣ 0 ) = p P ( 0 ∣ 0 ) = P ( 1 ∣ 1 ) = 1 − p \begin{aligned}&P\left(0\mid1\right)=P\left(1\mid0\right)=p\\&P\left(0\mid0\right)=P\left(1\mid1\right)=1-p\end{aligned} P(01)=P(10)=pP(00)=P(11)=1p也就是说,交叉概率(每个比特传输的错误概率)为 p p p



示例2

二元擦除信道的信道概率为
P ( 1 ∣ 1 ) = r , P ( ? ∣ 1 ) = s , P ( 0 ∣ 1 ) = 1 − r − s P ( 0 ∣ 0 ) = p , P ( ? ∣ 0 ) = q , P ( 1 ∣ 0 ) = 1 − p − q P(1\mid1)=r\:,\:P(?\mid1)=s\:,\:P(0\mid1)=1-r-s\\P(0\mid0)=p\:,\:P(?\mid0)=q\:,\:P(1\mid0)=1-p-q P(11)=r,P(?1)=s,P(01)=1rsP(00)=p,P(?0)=q,P(10)=1pq这里的“?”可以解释为输人丢失或者擦除。、



http://www.yayakq.cn/news/249693/

相关文章:

  • 网站文章不收录美食创意网页设计
  • asp网站qq登录wordpress related
  • 电子商务网站建设规划说明书怎么看一个网站用什么做的
  • 哪个行业最需要做网站郑州锐途网站建设
  • jsp网站开发详解 赵增敏网站域名更改了怎么换
  • 住房和城乡建设部网站31号文建设网站实训心得
  • 海洋牧场网站建设网站建设期间注意事项
  • 怎么建设小说网站学习网站建设难吗
  • 西安网站建设陕icp办公家具网站模版
  • 做执法设备有哪些网站新版wordpress编辑
  • 长寿做网站四川省城乡住房和城乡建设厅网站
  • 优酷网站建设视频教程集怎么看一个网站哪公司做的
  • 大学做兼职英语作文网站图文素材库免费
  • 商务网站建设与维护 ppt集团高端网站建设
  • 科技小制作怎么做视频网站图片制作在线
  • 网站实名认证资料网站seo教程
  • 营销网站建设软件下载商城网站建设价格最优
  • 在线做效果图的网站有哪些miniui做的网站
  • 大兴网站开发厦门优化网站
  • 常州网站建设团队电子商务网站建设重点
  • 备案网站内容格式填写网站开发怎么切换多种语言
  • 云浮市建设局网站衡水网站设计费用
  • 网站备案变更域名网站建设的推广渠道
  • 哪些大型网站有做互联网金融怎么做网站海外运营推广
  • 做视频解析网站是犯法的么罗湖网站(建设深圳信科)
  • 建站公司走量渠道网站文章系统
  • 公司网站域名com好还是cn好网站排名查询alexa
  • 浙江建设厅网站 打不开中小企业网站制作报价
  • 阜新市建设学校官方网站深圳企搜网站建设
  • 十大免费ppt网站下载app企业营销型网站系统