当前位置: 首页 > news >正文

南京栖霞区有做网站的吗wordpress自定义查询参数

南京栖霞区有做网站的吗,wordpress自定义查询参数,如何查看网站是哪家公司做的?,企业网站四种类型文章目录 前言分析数据集线性可分情况下的支持向量机原始问题凸优化包解法对偶问题凸优化包解法 数据集线性不可分情况下的线性支持向量机与软间隔最大化 前言 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需…

文章目录

  • 前言
  • 分析
  • 数据集线性可分情况下的支持向量机
    • 原始问题凸优化包解法
    • 对偶问题凸优化包解法
  • 数据集线性不可分情况下的线性支持向量机与软间隔最大化

前言

  • 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需要注意。总是把二分类的类别分为01,这样就导致我的目标函数跟算法描述的就不一样,所以求解结果就不正确。
  • 同时还有第二个要注意的就是凸优化包cvxpy中各种运算的表示方法,比如凸优化中常见的二次方程的表示,变量的默认形状等,要查看官方文档才能熟悉。变量的默认形状为列向量。

参考:

  • 李航:统计学习方法
  • CVXPY

分析

支持向量机算法中,我们的训练数据除了是两种类别以外,类别的编号也有要求,分别是1-1,只有这样,我们才能求每个样本所对应的函数间隔 D = y i ( w x i + b ) D=y_i(wx_i+b) D=yi(wxi+b)和几何间隔 D = y i w x i + b ∥ w ∥ 2 D=y_i\frac{wx_i+b}{\|w\|_2} D=yiw2wxi+b,在这种类别标签的情况下,预测值 w x i + b wx_i+b wxi+b与真实值 y i y_i yi之间的乘积才有意义。
预测与真实相同,乘积才会是大于0的;预测与真实相反,乘积就是小于0的。只有这样后面的目标函数最大化几何间隔才有意义。
重新表述一下可分数据集上支持向量机的目标函数和约束条件:
max λ s.t. y i w x i + b ∥ w ∥ 2 ≥ λ \begin{align*} &\textbf{max}&\lambda \\ &\textbf{s.t.} &y_i\frac{wx_i+b}{\|w\|_2}\ge\lambda \end{align*} maxs.t.λyiw2wxi+bλ

如果我们使用类别标签为01,那么当错误分类时,几何间隔为0,无法指导参数修改。所以必须要使用1-1

数据集线性可分情况下的支持向量机

此时有两种求法,一种是用原始算法,直接用cvxpy函数包求解原始的这个凸优化问题,并把问题变为下述形式:
max t ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ t \begin{align*} &\textbf{max}&\frac{t}{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge t \end{align*} maxs.t.w2tyi(wxi+b)t

由于通过同比例放大w,b可以实现条件中左边的乘积大小的任意变换,所以我们修改t 1 1 1。上述凸优化问题就变为:
min ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ 1 \begin{align*} &\textbf{min}&{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge 1 \end{align*} mins.t.w2yi(wxi+b)1

第二种方法就是将原始问题使用拉格朗日乘子法变换为对偶问题,将加入条件和拉格朗日乘子的拉格朗日函数进行求导,并将求导得到的关系式带入拉格朗日函数,这样就可以得到对偶问题。

原始问题凸优化包解法

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
obj=cp.Minimize(1/2*cp.sum_squares(w))
cons=[train_y[0]*(train_x@w+b)[0]>=1,train_y[1]*(train_x@w+b)[1]>=1]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value:{w.value,result,b.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]))

对偶问题凸优化包解法

本例子中我们使用了小规模的数据,只有两个样本,所以这两个样本肯定都是支持向量,也就是对应的拉格朗日乘子都不为0,对于大规模样本数据的情况,如果不在分界面上,那么对应的拉格朗日乘子为0,也就不是支持向量。拉格朗日乘子不为0的肯定就是支持向量。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
alpha=cp.Variable(2)
obj=cp.Minimize(1/2*cp.quad_form(alpha,(train_x@train_x.T)*(train_y@train_y.T))-cp.sum(alpha))
cons=[alpha>=0,train_y.T@alpha>=0,train_y.T@alpha<=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'alpha.value,result,w:{alpha.value,result,np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)}')
#检验支持向量机求出的分离面是否与这两个样本之间的连线垂直
w=np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)
np.array(train_x[0,:]-train_x[1,:]).reshape(1,-1)@np.array([-w[1]/w[0],1]).reshape(2,-1)

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
alpha.value,result,w:(array([0.24529888, 0.24529888]), -0.24529887505030898, array([-0.41507783, -0.56418804]))
array([[-4.4408921e-16]])

至于参数b,我们可以通过支持向量所对应的等式求出。
我们可以观察一下原始问题与对偶问题的解答是否一致。

数据集线性不可分情况下的线性支持向量机与软间隔最大化

软间隔顾名思义就是给原来的间隔留下一点宽容量,给那些不容易分正确的留一点余地。同时对于这些余地进行惩罚所得到的分割面,以上面线性可分的数据做演示。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(2)
obj=cp.Minimize(1/2*cp.sum_squares(w)+100*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value,softgap.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]), array([-2.90746355e-22,  1.53881391e-22]))

可以看出在线性可分的的情况下软间隔不起作用。
那么我们制造一些线性不可分的数据,来测试一下。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.array([[0,0],[1,0],[2,0]])
train_y=np.array([-1,1,-1]).reshape(3,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(3)
obj=cp.Minimize(1/2*cp.sum_squares(w)+0.1*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],train_y[2]*(train_x@w+b)[2]>=1-softgap[2],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[0 0][1 0][2 0]] [[-1][ 1][-1]]
w.value,result,b.value,softgap.value:(array([9.07653476e-18, 0.00000000e+00]), 0.2, array([-1.]), array([ 8.59013373e-23,  2.00000000e+00, -8.59013423e-23]))
http://www.yayakq.cn/news/530854/

相关文章:

  • 网站必须做API接口吗邢台市人才网
  • 中国建设银行社保卡网站网站建设买服务器还是数据库
  • 教育视频培训网站建设wordpress 没有足够权限
  • 团队云智能网站建设大地资源在线资源免费观看
  • 网站首页风格网站建设需求分析文档
  • 奥派电子商务网站建设论文推广文案格式
  • 成都软件开发网站建设网站简介 title
  • 郑州知名网站推广seo内容优化方法
  • 网站开发报告步骤分析wordpress网站全过程
  • 网站建设分析从哪几个方面网络营销推广方案怎么做
  • 网站宣传模式网站备案信息批量查询
  • 做网站茶叶首页标题怎么写飞言情做最好的小说网站
  • 中国网站建设网一键生成文案的网站
  • 17一起做网店网站wordpress文章新窗口打开
  • 提高网站规范化建设黄骅市天气预报15天气
  • 我想自己创建购物网站宝安关于网站建设
  • 金华市建设局官方网站wordpress 文章点赞
  • 昆明网站建设优化图片山西网站制作公司哪家好
  • 音频网站建设维护平台是什么工作
  • 盐城网站建设渠道合作wordpress横向导航菜单主题
  • 网站建设的方式有哪些内容wordpress装模板
  • 网站开发团队配置手机回收网站开发
  • 怎么样备份网站数据山东建设工程管理局网站
  • 网站seo专员网站制作 常州
  • 网站想要游览怎么做长沙优化公司
  • 河北网站制作报价免费网站推广app
  • 网站建设需求材料网站怎么做超链接
  • 网站开发运营公司绩效提成方案1688网页登录
  • 网站 地图导航代码网站素材模板 站长
  • 雄安网站建设公司电商营销型网站建设