当前位置: 首页 > news >正文

代做企业网站备案洛阳建站优化教程

代做企业网站备案,洛阳建站优化教程,简单的网站首页,重庆建造师管理系统查询系统MATLAB求解一维线性函数问题前言正文函数实现可视化处理可视化结果前言 一维线性函数,也称为一次函数,是指只有一个自变量xxx的函数,且函数表达式可以写成yaxbyaxbyaxb的形式,其中aaa和bbb是常数。具体来说,aaa称为斜…

MATLAB求解一维线性函数问题

  • 前言
  • 正文
  • 函数实现
  • 可视化处理
    • 可视化结果

前言

一维线性函数,也称为一次函数,是指只有一个自变量xxx的函数,且函数表达式可以写成y=ax+by=ax+by=ax+b的形式,其中aaabbb是常数。具体来说,aaa称为斜率,决定了函数图像的倾斜程度;bbb称为截距,决定了函数图像与yyy轴的交点位置。
优化一维线性函数的目标是找到一个使得函数值最小或最大的xxx值。

粒子群算法(Particle Swarm Optimization,PSO) 是一种启发式优化算法,它源于对鸟群捕食行为的研究。在粒子群算法中,被优化的问题被视为一个多维空间中的目标函数,算法通过模拟群体中每个粒子在空间中的搜索行为来寻找目标函数的全局最优解。

每个粒子在搜索空间中的位置表示一个潜在解,其速度表示了搜索方向和步长。每个粒子具有一个适应度值,该适应度值根据目标函数的表现来计算。粒子群算法通过协同粒子的行为来优化目标函数。粒子的速度和位置在每个迭代中被更新,使其朝着群体中的最佳位置和全局最佳位置移动。

粒子群算法的运行过程如下:

  1. 初始化粒子群,包括每个粒子的初始位置和速度,并设置全局最佳位置和全局最佳适应度值为初始值。
  2. 计算每个粒子的适应度值,更新全局最佳位置和全局最佳适应度值。
  3. 更新每个粒子的速度和位置,根据每个粒子当前位置与全局最佳位置之间的差异来调整速度和位置。
  4. 重复步骤23,直到达到指定的停止准则,如达到最大迭代次数或满足收敛要求。

在实践中,粒子群算法经常与其他优化算法结合使用,例如遗传算法、模拟退火等。这些算法的组合可以提高搜索效率和准确性,从而提高优化问题的解决效率。

正文

粒子群算法可以用来优化一维线性函数。具体地,我们可以将一维线性函数f(x)f(x)f(x)转化为目标函数y(x)y(x)y(x),使得y(x)y(x)y(x)的取值范围为[0, 1],且函数值越小表示越优,函数值越大表示越差。具体转化方式如下:

y(x)=f(x)−min⁡f(x)max⁡f(x)−min⁡f(x)y(x) = \frac{f(x) - \min f(x)}{\max f(x) - \min f(x)}y(x)=maxf(x)minf(x)f(x)minf(x)

其中max⁡f(x)\max f(x)maxf(x)min⁡f(x)\min f(x)minf(x)分别是函数f(x)f(x)f(x)在一定区间内的最大值和最小值。这样,优化f(x)f(x)f(x)就可以转化为优化y(x)y(x)y(x),即找到使得y(x)y(x)y(x)最小的xxx值。

在粒子群算法中,我们可以初始化一些粒子,并在每一次迭代中更新粒子的速度和位置,直到达到一定的停止条件。在更新速度和位置时,我们需要使用上文提到的公式,同时需要指定一些超参数,例如学习因子、惯性权重、加速度权重等。具体可以参考之前的回答。

在优化一维线性函数时,粒子群算法可以在一定的迭代次数内找到一个相对较优的解。但是需要注意,对于线性函数,我们也可以通过解析求导的方式直接求得最优解,因此粒子群算法在实际中并不常用于优化线性函数。

函数实现

%%
clear
close all
warning off
clc
%%
% 调用粒子群算法求解
x_min = -10;
x_max = 10;
n_pop = 50;
n_iter = 100;
w = 0.8;
c1 = 1.5;
c2 = 1.5;
[gbest, gbest_val] = pso(@objfun, x_min, x_max, n_pop, n_iter, w, c1, c2);% 输出结果
fprintf('最优解:x = %f,最优值:%f\n', gbest, gbest_val);% 目标函数
function y = objfun(x)y = 2*(x-3).^2 + 10;
end% 粒子群算法
function [gbest, gbest_val] = pso(objfun, x_min, x_max, n_pop, n_iter, w, c1, c2)% 参数设置x_range = x_max - x_min;v_min = -x_range;v_max = x_range;% 初始化粒子pop = x_min + rand(n_pop, 1) * x_range;v = v_min + rand(n_pop, 1) * (v_max - v_min);pbest = pop;pbest_val = objfun(pop);[gbest_val, gbest_idx] = min(pbest_val);gbest = pbest(gbest_idx);% 迭代for i = 1:n_iter% 更新速度和位置r1 = rand(n_pop, 1);r2 = rand(n_pop, 1);v = w*v + c1*r1.*(pbest-pop) + c2*r2.*(gbest-pop);pop = pop + v;% 边界处理pop(pop < x_min) = x_min;pop(pop > x_max) = x_max;% 更新个体历史最优和全局历史最优pbest_val_new = objfun(pop);pbest_update_idx = pbest_val_new < pbest_val;pbest(pbest_update_idx) = pop(pbest_update_idx);pbest_val(pbest_update_idx) = pbest_val_new(pbest_update_idx);[gbest_val_new, gbest_idx_new] = min(pbest_val);if gbest_val_new < gbest_valgbest = pbest(gbest_idx_new);gbest_val = gbest_val_new;endend
end

通过改变xxx的范围xmin=−10;xmax=10;x_min = -10;x_max = 10;xmin=10;xmax=10;来得到一维线性函数的最优值

可视化处理

%%
clear
close all
warning off
clc
%%
% 调用粒子群算法求解
x_min = -10;
x_max = 10;
n_pop = 50;
n_iter = 100;
w = 0.8;
c1 = 1.5;
c2 = 1.5;
[gbest, gbest_val] = pso(@objfun, x_min, x_max, n_pop, n_iter, w, c1, c2);% 输出结果
fprintf('最优解:x = %f,最优值:%f\n', gbest, gbest_val);% 可视化处理
x = linspace(x_min, x_max, 1000);
y = objfun(x);
figure();
plot(x, y, 'linewidth', 2);
hold on;
scatter(gbest, gbest_val, 100, 'r', 'filled');
xlabel('x');
ylabel('y');
title('PSO for 1D Nonlinear Function');
legend('Objective Function', 'Optimum');
grid on;% 目标函数
function y = objfun(x)y = 2*(x-3).^2 + 10;
end% 粒子群算法
function [gbest, gbest_val] = pso(objfun, x_min, x_max, n_pop, n_iter, w, c1, c2)% 参数设置x_range = x_max - x_min;v_min = -x_range;v_max = x_range;% 初始化粒子pop = x_min + rand(n_pop, 1) * x_range;v = v_min + rand(n_pop, 1) * (v_max - v_min);pbest = pop;pbest_val = objfun(pop);[gbest_val, gbest_idx] = min(pbest_val);gbest = pbest(gbest_idx);% 迭代for i = 1:n_iter% 更新速度和位置r1 = rand(n_pop, 1);r2 = rand(n_pop, 1);v = w*v + c1*r1.*(pbest-pop) + c2*r2.*(gbest-pop);pop = pop + v;% 边界处理pop(pop < x_min) = x_min;pop(pop > x_max) = x_max;% 更新个体历史最优和全局历史最优pbest_val_new = objfun(pop);pbest_update_idx = pbest_val_new < pbest_val;pbest(pbest_update_idx) = pop(pbest_update_idx);pbest_val(pbest_update_idx) = pbest_val_new(pbest_update_idx);[gbest_val_new, gbest_idx_new] = min(pbest_val);if gbest_val_new < gbest_valgbest = pbest(gbest_idx_new);gbest_val = gbest_val_new;endend
end

可视化结果

函数y = 2*(x-3).^2 + 10

http://www.yayakq.cn/news/496476/

相关文章:

  • 网站主要的设计内容主题国际十大公关公司
  • wap网站制作工具网站建设有哪些效益
  • 网站标题title凡科建站电脑版网址
  • 彩票网站如何做福州网站建设设计公司
  • 北京网站模板下载企业商城建站
  • 知名企业网站截图简介网站建设流程
  • 建设心理网站网站搜索引擎优化公司
  • 智慧团建网站几点关闭网站开发需要注意什么
  • 石城县网站建设全能网站建设
  • 做美直播网站泗阳做网站公司
  • 公司设计网站建设数据线东莞网站建设技术支持
  • 云南免费网站建设下面什么不属于网络推广方法
  • 昆山有建设网站的吗做爰片免费观看网站
  • 成都注册公司核名网站网站建设需求和页面需求怎么提
  • 高明做网站长沙网站备案
  • 哈尔滨电商网站建设专做女装拿货的网站
  • 网站简介 title佛山牛豹云网站开发
  • 单色系网站设计有哪些关于国家对网站建设
  • 用友财务软件官方网站网站开发质量管理
  • 做旅游那些网站好国内优秀网站设计欣赏
  • 设计与制作网站响应式网站的制作网站制作
  • 深圳做网站设计制作开发html5响应式企业网站
  • 建设网站的费用入什么科目百度精简版入口
  • 网站系统建设系广告经营者网站建设目的内容输出
  • 做推广赚钱的网站wordpress 版权信息
  • 医疗网站开发ppt摄影工作室网站建设模板
  • 网站icp备案网址打赏网站开发
  • 百度权重查询网站石家庄网红
  • 北京网站制作哪家好深圳找网站建设公司
  • 网站繁体和中文这么做亚马逊雨林是怎么形成的