当前位置: 首页 > news >正文

如何在卖家淘宝网站做产品链接东莞原创设计院官网

如何在卖家淘宝网站做产品链接,东莞原创设计院官网,网络规划设计师2022报名时间,做网站美工工资多少多分类问题 利用逻辑回归解决多分类问题,假如有一个训练集,有 3 个类别,分别为三角形 𝑦 1,方框𝑦 2,圆圈 𝑦 3。我们下面要做的就是使用一个训练集,将其分成 3 个二…

多分类问题

利用逻辑回归解决多分类问题,假如有一个训练集,有 3 个类别,分别为三角形 𝑦 = 1,方框𝑦 = 2,圆圈 𝑦 = 3。我们下面要做的就是使用一个训练集,将其分成 3 个二元分类问题。
我们先从用三角形代表的类别 1 开始,此时创造一个新的训练集,三角形为正类,方框和圆圈为负类;

对于方框代表的类别2,此时创造一个新的训练集,方框为正类,三角形和圆圈为负类;

对于圆圈代表的类别3,此时创造一个新的训练集,圆圈为正类,方框和三角形为负类。

过拟合问题

如果模型有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据集。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HRq07PFu-1677397084341)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230225104532799.png)]

第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一
个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看
出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的
训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。

过拟合问题解决方法:

1.丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如 PCA)
2.正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

正则化线性回归

对于上面的图片所示模型,由于高次项导致过拟合的问题,所以通过将高次项的系数接近于0来解决这个问题(即减少θ3、θ4\theta_3、\theta_4θ3θ4的大小)。通过在θ3、θ4\theta_3、\theta_4θ3θ4加入惩罚项来减少θ3、θ4\theta_3、\theta_4θ3θ4的大小。
J(θ0,θ1,...,θn)=12m∑i=1m(hθ(x(i))−y(i))2J(\theta_{0},\theta_{1},...,\theta_{n})=\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2} J(θ0,θ1,...,θn)=2m1i=1m(hθ(x(i))y(i))2
将上述代价函数改为
J(θ0,θ1,...,θ4)=12m[∑i=1m(hθ(x(i))−y(i))2+1000θ32+10000θ42]J(\theta_{0},\theta_{1},...,\theta_{4})=\frac{1}{2m}[\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2}+1000\theta_3^2+10000\theta_4^2] J(θ0,θ1,...,θ4)=2m1[i=1m(hθ(x(i))y(i))2+1000θ32+10000θ42]
假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设(一般不对θ0\theta_0θ0进行惩罚):
J(θ)=12m[∑i=1m(hθ(x(i))−y(i))2+λ∑j=1nθj2]J(\theta)=\frac{1}{2m}[\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2}+\lambda \sum_{j=1}^{n} \theta_j^2] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]
如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成 Font metrics not found for font: .,也就是图中红色直线所示的情况,造成欠拟合。 因为如果我们令 𝜆 的值很大的话,为了使 Cost Function 尽可能的小,所有的 𝜃 的值(不包括θ0\theta_0θ0)都会在一定程度上减小。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ck5wbVGP-1677397084341)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230225111158548.png)]

对正则化后的代价函数进行梯度下降得到
θ0:=θ0−α1m∑i=1m(hθ(x(i))−y(i))x0(i)\theta_0:=\theta_0-\alpha \frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})}x_0^{(i)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)

θj:=θj−α[1m∑i=1m(hθ(x(i))−y(i))xj(i)+λmθj]\theta_j:=\theta_j-\alpha[ \frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})}x_j^{(i)}+\frac{\lambda}{m} \theta_j] θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj]

整个公式可写为
θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))xj(i)\theta_j:=\theta_j(1-\alpha \frac{\lambda}{m})-\alpha \frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})}x_j^{(i)} θj:=θj(1αmλ)αm1i=1m(hθ(x(i))y(i))xj(i)
则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令𝜃值减少了一个额外的值。

利用正规方程来求解正则化线性回归模型

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hEkfnaGZ-1677397084342)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230225112347014.png)]

正则化逻辑回归模型

J(θ)=1m∑i=1m−y(i)⋅log(hθ(x(i)))−(1−y(i))⋅log(1−hθ(x(i)))+λ2m∑j=1nθj2J({\theta})=\frac{1}{m}\sum_{i=1}^{m}{-y^{(i)}\cdot log(h_{\theta}(x^{(i)}))-(1-y^{(i)})\cdot log(1-h_{\theta}(x^{(i)}))}+\frac{\lambda}{2m}\sum_{j=1}^{n} \theta_j^2 J(θ)=m1i=1my(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))+2mλj=1nθj2

该代价函数的梯度下降算法为
θ0:=θ0−α1m∑i=1m(hθ(x(i))−y(i))x0(i)\theta_0:=\theta_0-\alpha \frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})}x_0^{(i)} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)

θj:=θj−α[1m∑i=1m(hθ(x(i))−y(i))xj(i)+λmθj]\theta_j:=\theta_j-\alpha[ \frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})}x_j^{(i)}+\frac{\lambda}{m} \theta_j] θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)+mλθj]

http://www.yayakq.cn/news/6369/

相关文章:

  • 牡丹江网站建设网站四网合一
  • 网站栏目 英文网站建设 紧急检查工作
  • discuz网站编码网站模板 数据库
  • 象山建设局网站橱柜设计师培训
  • 手机网站域名解析怎么做网站常用热点hot小图标
  • 网站续费合同书链接缩短生成器
  • 建设wap网站企业网站哪个好
  • 青岛cms建站系统免费引流推广工具
  • 广东中南建设有限公司网站泗阳网站建设
  • 充值网站怎么做的做网站 图片是文本
  • asp网站加速wordpress跳转到老域名
  • 使用cdn的网站h5页面导入 WordPress
  • 网站开发后台结构系统设计
  • 有做网站网站的么wordpress js图片
  • 优秀的网页网站设计wordpress 导航菜单
  • 深圳企业网站定制网站建设哪家合适
  • 云南做网站的公司德国网站的后缀名
  • 网站建设方案书内容管理制度济南百度推广公司
  • 金牛区建设和交通局网站红酒手机网站建设
  • 如何制作学校网站应用市场下载安装app
  • 不用ftp做网站南昌谁做网站设计
  • 做微信公众号还是网站深圳东门眼镜城
  • 网站建设使用什么软件比较好黑龙江省城乡和建设厅网站首页
  • 摄影师作品网站有哪些什么网站能免费
  • 网站开发 如何备案网站建设0doit
  • 站长素材网app免费下载沈阳网站开发技术公司
  • 自己做的网站添加交费功能国外网站空间
  • 投资担保网站建设asp.net.做简单的网站
  • 云南建网站网页打开速度慢的解决方法
  • 完整个人网站html包括搜索引擎排名、网页标签优化、相关链接交换、网络广告投放等