当前位置: 首页 > news >正文

网站优化seo技术网站皮肤是怎么做的

网站优化seo技术,网站皮肤是怎么做的,wordpress的论坛,4399在线观看免费韩国LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild 目录 1. 简介 2. 探索大规模语言模型的能力极限 3. LLaVA-Bench (Wilder):日常生活视觉聊天基准 4. Benchmark 结果 1. 简介 我们通过引入近期更强大的开源大语言模型(…

LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild

目录

1. 简介

2. 探索大规模语言模型的能力极限

3. LLaVA-Bench (Wilder):日常生活视觉聊天基准

4. Benchmark 结果


1. 简介

我们通过引入近期更强大的开源大语言模型(LLM)扩展了 LLaVA-NeXT,并报告了在更强语言模型(LM)方面的研究成果:

  • 通过更强大、更大规模的语言模型提升多模态能力:模型规模最高提升至 3 倍。这使多模态模型(LMM)能够更好地展示来自 LLM 继承的视觉世界知识和逻辑推理能力。目前支持 LLaMA3(8B)和 Qwen-1.5(72B 和 110B)。
  • 优化的视觉对话能力,适用于更多真实场景:覆盖不同应用场景。为评估改进后的多模态能力在实际中的表现,我们收集并开发了新的评估数据集——LLaVA-Bench(Wilder)。该数据集继承了 LLaVA-Bench(in-the-wild)的精神,聚焦日常生活中的视觉对话,同时扩大数据规模以进行更全面的评估。

为了清楚地体现 LLM 在提升多模态性能中的作用,我们继续沿用 LLaVA-NeXT 的相同训练策略,从而保持 LLaVA 家族的极简设计与数据效率。最大规模的 110B 模型在 128 张 H800 显卡上训练完成仅需 18 小时。

2. 探索大规模语言模型的能力极限

在我们对 LLaVA-NeXT 的探索中,当将 LLM 的规模从 13B 扩展到 34B 时,我们见证了显著的性能飞跃。随着更强大的开源 LLM 的出现,人们自然会对多模态性能的极限产生好奇,从而提出一个问题:LLM 的语言能力能多有效地迁移到多模态环境中?

为评估 LLM 的语言能力,我们采用了 “大规模多任务语言理解”(Massive Multitask Language Understanding,MMLU)benchmark 的得分。为评估在应用相同 LLaVA-NeXT 训练策略后的多模态能力,我们研究了四个关键基准:

  • 用于跨学科理解的 MMMU、
  • 用于视觉数学推理的 Mathvista、
  • 用于科学图表理解的 AI2D,
  • 用于日常视觉聊天场景的 LLaVA-W

这些基准涵盖了 LMM 在现实世界中的多种应用场景。

多模态能力与语言能力之间的相关性通过图 1 直观展示,其中利用回归线显示了各基准的趋势。

改进的语言能力:在可比规模的 LLM(例如 7B Mistral/Vicuna、7B Qwen、8B LLaMa3)中,有一个一致的趋势,即语言能力越强(通过 MMMU 得分衡量),多模态能力也越强。

模型规模的影响:在同一 LLM 系列中(例如 Qwen LLM:7B、72B、110B),较大规模的模型在多模态基准上始终表现更优。这进一步表明,较大规模的模型往往具备更强的语言能力,从而在多模态任务中表现更好。

在上述两种分析中,更强大的 LLM 通常表现出更优的多模态能力。这种现象可以归因于更广泛的世界知识、强大的逻辑推理能力以及卓越的对话能力,这些能力通常与更强大的 LLM 相关。通过 LLaVA-NeXT 的轻量级训练,这些语言能力得以良好地保留并转移到视觉语言领域,这得益于跨模态概念的对齐,以及视觉指令调优中与人类意图的对齐。

3. LLaVA-Bench (Wilder):日常生活视觉聊天基准

开发大语言模型(LLM)的终极目标之一是构建一个通用助手,帮助人类处理日常生活中的各种多模态任务。因此,建立稳健的基准来精准衡量相关进展显得尤为重要。LLaVA-Bench(In-the-Wild),也被称为 LLaVA-W,就是这样一个基准,用于衡量多模态模型(LMMs)的日常生活视觉聊天能力。

然而,由于仅包含 60 个示例,我们认识到需要一个更大规模的数据集。基于此,我们引入了 LLaVA-Bench(Wilder),该基准包括两个版本:一个较小的版本,包含 120 个示例,用于快速评估;以及一个中等规模的版本,包含 1020 个示例,用于全面测量。这些数据集涵盖了多种场景,例如数学问题解决、图像理解、代码生成、视觉 AI 助手和基于图像的推理。为了构建这些数据集,我们收集了来自在线服务的反映真实用户需求的指令和图像。随后,我们对样本进行了严格筛选,以解决隐私问题并降低潜在风险。这些提示的回答均使用 GPT4-V 生成。

与其他基准的比较。图 2 展示了 LLaVA-Bench(Wilder)与现有 LMM 评估基准之间的可视化对比。许多现有基准采用固定格式的问答(QA)模式,这种模式因其在评估指标和模型比较中的易用性而被广泛采用。基于这一趋势,诸如 MMMU、Mathvista 和 AI2D 等基准被设计用于评估 LMM 在特定知识密集领域的性能。而 RealWorldQA 则聚焦于日常场景,但局限于简短回答格式。然而,作为助手模型,具备与用户进行自由形式对话的能力对激发兴趣至关重要,超越了简单短答的局限性。因此,在日常生活视觉聊天场景中加入自由形式的对话变得尤为关键。LLaVA-W 通过引入这样一个基准原型树立了先例,而 LLaVA-Bench-Wilder 则通过涵盖更多日常生活场景和不同应用进一步拓展了这一基准。 

4. Benchmark 结果

项目页面:https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/ 

LLaVA-Bench (in-the-wild):https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md 

http://www.yayakq.cn/news/346389/

相关文章:

  • 关于做网站ppt织梦怎么做企业网站
  • 门户网站建设询价公告国外服务器租赁
  • 对网站建设有什么样意见顺企网怎么发布公司信息
  • 代码网站推荐《网站开发实例》pdf下载
  • 四川城乡建设部网站首页学校网站建设培训
  • 建设银行朝阳支行网站手机端原神
  • 安徽省建设厅网站域名永久免费crm客户管理系统
  • 网站篡改搜索引擎js王业美
  • 网约车后台平台网站建设html5模板免费下载
  • 手工做火枪的网站牛网站
  • 织梦网站数据库备份文件夹安阳设计工厂
  • 如果建手机网站上海千途建站
  • 什么网站做禽苗好的网站安徽省住房和城乡建设局
  • 阿里云建站后台建站做ppt的软件怎么下载网站
  • 南昌高端网站开发绍兴建设企业网站
  • 设计做网站通用cms的源代码国内好的网站设计
  • 黑龙江企业网站设计团队新乡网站开发公司
  • 微网站建设 上海创建一个公司网站需要多少钱
  • 电脑网站开发优化关键词的方法
  • 怎样更换网站cmslogo注册商标流程
  • 网站中的文章可以做排名吗沈阳网站建设方法
  • 建设信用卡网站是什么wordpress hpkp
  • 怎样建一个个人网站做网站 空间还是服务器
  • 重庆业务外包网站建设哈尔滨市建工建设有限公司
  • 企业注册百家号可以做网站吗网站设计作品案例
  • 做窗帘什么网站网站改版多久恢复
  • 合肥 网站运营零食网站建设规划书
  • 网站备案被注销的原因上海政务服务网
  • .net 网站开发流程哪些网站可以做招商广告语
  • idc网站建设一般网址的正确格式