当前位置: 首页 > news >正文

当阳网站建设电话合肥建设银行网站首页

当阳网站建设电话,合肥建设银行网站首页,公司网站建设合同要交印花税吗,网站注册属于自己的网站一、算法原理 1.1 CNN原理 卷积神经网络具有局部连接、权值共享和空间相关等特性。卷积神经网络结构包含卷积层、激活层和池化层。 (a)二维卷积层将滑动卷积滤波器应用于输入。该层通过沿输入垂直和水平方向 移动滤波器对输入进行卷积,并计…

   一、算法原理

1.1 CNN原理 

    卷积神经网络具有局部连接、权值共享和空间相关等特性。卷积神经网络结构包含卷积层、激活层和池化层。

    (a)二维卷积层将滑动卷积滤波器应用于输入。该层通过沿输入垂直和水平方向 移动滤波器对输入进行卷积,并计算权重与输入的点积,然后加入一个偏置项。具体表达式为:

    卷积层的功能是对输入数据进行特征提取。其内部包含多个卷积核,也称为 感受野。将输入图像和卷积核做卷积运算,可以增强原始信号特征的同时降低噪声。卷积运算的具体过程如图1所示。

    

图1 卷积运算的具体过程

(2)激活函数

     在卷积神经网络中,常用的激活函数包括 Sigmoid 函数、Tanh 函数、Swish 函数和 Relu 函数。Relu 函数解决了 Sigmoid 函数和 Tanh 函数梯度消失的问题, 提高了模型收敛的速度,受到的广泛学者的欢迎。

(3)池化层

     池化层又称为下采样层,池化层分为平均池化层和最大池化层。其中,最大池化层通过将输入分为矩形池化区域,并计算每个区域的最大值来执行下采样, 而平均池化层则是计算池化区域的平均值来执行下采样。池化层的池化过程如图2所示。

图2 池化过程示意图

1.2 LSTM原理 

    LSTM采用循环神经网络( Recurrent Neural Network,RNN )架构[8],它是专门为从序列中学习长期依赖关系而设计的。LSTM可以使用4个组件:输入门、输出门、遗忘门和具有自循环连接的单元来移除或添加块状态的信息。其神经元结构如图3所示。

图3  LSTM网络结构

       设输入序列共有 k 个时间步,LSTM 门控机制 结构为遗忘门、输入门和输出门,xt携带网络输入值 作为向量引入系统,ht 通过隐含层对 LSTM 细胞进 行输出,ct携带着 LSTM 细胞状态进行运算。LSTM 运算规则如下:

      计算后保留 ct与 ht,用于下一时间步的计算;最后一步计算完成后,将隐藏层向量 hk作为输出与本组序列对应的预测值对比,得出损失函数值,依据梯度下降算法,优化权重和偏置参数,以此训练出迭代次数范围内最精确的网络参数。

1.3 CNN-LSTM框架

    以时序预测为例,本次分享的CNN-LSTM的框架如图4所示。

图4 CNN-LSTM框架

二、代码实战

clcclearload('Train.mat')load('Test.mat')% LSTM 层设置,参数设置inputSize = size(Train_xNorm{1},1);   %数据输入x的特征维度outputSize = 1;  %数据输出y的维度  numhidden_units1=50;numhidden_units2= 20;numhidden_units3=100;%opts = trainingOptions('adam', ...    'MaxEpochs',10, ...    'GradientThreshold',1,...    'ExecutionEnvironment','cpu',...    'InitialLearnRate',0.001, ...    'LearnRateSchedule','piecewise', ...    'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新    'LearnRateDropFactor',0.5, ...    'Shuffle','once',...  % 时间序列长度    'SequenceLength',k,...    'MiniBatchSize',24,...    'Verbose',0);%% lstmlayers = [ ...        sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置    sequenceFoldingLayer('name','fold')    convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')    batchNormalizationLayer('name','batchnorm1')    reluLayer('name','relu1')    maxPooling2dLayer([1,3],'Stride',1,'Padding','same','name','maxpool')    sequenceUnfoldingLayer('name','unfold')    flattenLayer('name','flatten')    lstmLayer(numhidden_units1,'Outputmode','sequence','name','hidden1')     dropoutLayer(0.3,'name','dropout_1')    lstmLayer(numhidden_units2,'Outputmode','last','name','hidden2')     dropoutLayer(0.3,'name','drdiopout_2')    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %    tanhLayer('name','softmax')    regressionLayer('name','output')];lgraph = layerGraph(layers)lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');plot(lgraph)%% 网络训练ticnet = trainNetwork(Train_xNorm,Train_yNorm,lgraph,opts);%% 测试figurePredict_Ynorm = net.predict(Test_xNorm);Predict_Y  = mapminmax('reverse',Predict_Ynorm',yopt);Predict_Y = Predict_Y';plot(Predict_Y,'g-')hold on plot(Test_y);    legend('预测值','实际值')

实验结果:


    部分知识来源于网络,如有侵权请联系作者删除~


    今天的分享就到这里了,后续想了解智能算法、机器学习、深度学习和信号处理相关理论的可以后台私信哦~希望大家多多转发点赞加收藏,你们的支持就是我源源不断的创作动力!


作 者 | 华 夏

编 辑 | 华 夏

校 对 | 华 夏

http://www.yayakq.cn/news/283428/

相关文章:

  • 拍卖网站模板下载怎么制作动态的网站
  • 个人软件制作网站源码做网站的有哪些
  • php网站建设入门教程网站和域名的区别
  • 下厨房网站学做蒸包视频定制摄影app和摄影网站的区别
  • 公司网站经常打不开手机网站开发开发
  • 网站专业销售团队介绍端午节网站建设
  • 123建站电商网站的相同点
  • 建立网站的方案网站怎么加链接
  • 房天下网站建设网站设计高端
  • 租车网站模版一个人做网站设计兼职
  • 农家乐网站开发企业官方网站应该怎么样建设
  • 广州工商注册公司注册岳阳优化营商环境
  • 网站建设服务有哪些网站架构设计的意义
  • 聊城建设银行网站杭州室内设计公司排行榜
  • 哈尔滨建站模板源码短视频推广渠道有哪些
  • 做搜狗网站优化排名软360 的网站链接怎么做
  • 做网站的搜索引擎住房建设建设部网站
  • 网站点赞怎么做网站怎么实现两种语言
  • html5做网站链接微网站简介
  • 个人怎么做ckmov解析网站电商运营新手要懂哪些
  • 东莞市大朗镇福州软件优化网站建设
  • 163网站建设百度在线扫题入口
  • 网站添加手机站wordpress多语言无效
  • 做微信推送的网站简历制作官网
  • 辽宁地矿建设集团有限公司网站WordPress mx 主题
  • 沃航科技网站开发个人信息页面设计漂亮的网站
  • 做网站的公司有哪些网站开发专业毕业设计
  • 网站如何合理建设seo自学html做网站要多久
  • 黄山公司做网站平台推广软件
  • 网站建设的流程图示建设外围彩票网站