当前位置: 首页 > news >正文

php网站开发技术论文国内目前比较好的crm系统

php网站开发技术论文,国内目前比较好的crm系统,3网合一网站,业务员销售管理软件众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。 随着 WSL2 对物理机显卡的支持,Nvidia-…

众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。

随着 WSL2 对物理机显卡的支持,Nvidia-Docker 也提供了对容器显卡的支持。我们可以通过拉取不同的 Docker 镜像的方式来实现对容器内 CUDA、CUDNN 的自由切换,操作非常简易。

1. Win11 显卡驱动的安装

注意:WSL2中是不需要且不能安装任何显卡驱动的,它的显卡驱动完全依赖于 Win11 中的显卡驱动,因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本(必须是 Win11 版本的驱动),这个已经有很多教程了,这里就不赘述。如果你安装成功,可以在 Win11 的 cmd 中输入 nvidia-smi可以看到下图。
在这里插入图片描述

因为 WSL2 中的显卡驱动完全依赖于 Win11 的显卡驱动,因此在 WSL2 中输入 nvidia-smi 也可以看到相同驱动版本的输出。
请注意:这里的 nvidia-smi 能作用的范围,只作用于你 Win11 安装显卡驱动时所登录的那个用户名对应到 WSL2 中的用户名。比如我是在 Win11 (guosongyuan) 用户上安装的显卡驱动,那么我只能在 WSL2 的 gsy 用户状态下才能执行该 nvidia-smi 指令,root 用户执行该命令是不能生效的。

在这里插入图片描述

2. 安装 Docker 和 Nvidia-Docker

  1. 安装 Docker 引擎可以参考文档:Docker 引擎官方安装教程;
  2. 安装 Docker 引擎之后,就可以在其基础上安装 Nvidia-Docker 组件:Nvidia-Docker 安装教程。
    这两个步骤非常简单,如果看不懂英语的话直接用谷歌翻译就好。

3. 选择合适的 CUDA 和 CUDNN 的镜像

使用 Nvidia-Docker 的好处就在于,你不需要真的在 WSL 中安装 CUDA 和 CUDNN,这样就可以避免在配置不同项目环境时遇到的很麻烦的环境切换问题。我们只要每次遇到一个新的项目,拉取对应的 CUDA 和 CUDNN 版本即可,即插即用,不想用了直接删除对应的镜像和容器即可,跟删除软件一样方便。

这里以安装 CUDA 11.2.0 版本为例,我们来到 Docker 镜像市场:Docker HUB,在其中搜索关键字 nvidia/cuda,如下图。
在这里插入图片描述

点进入,在 Tags 中搜索对应的 CUDA 版本,注意同一个版本下对应三种不同的类型(devel、runtime、base),我们推荐安装 devel 版本,因为它的环境更齐全,我们这里因为 WSL2 是 Ubuntu 20.04 版本的,所以我们选择镜像的时候选择 ubuntu20.04 后缀的。
这里以 nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 镜像为例,通过 sudo docker pull nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 将镜像拉取下来。

拉取镜像之后,我们可以查看当前镜像中的显卡驱动、CUDA版本和 CUDNN 的版本。

  1. 查看显卡驱动版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvidia-smi
  2. 查看 CUDA 版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvcc -V
  3. 查看 CUDNN 版本,因为镜像官方将 CUDA 和 CUDNN 进行了解耦合,因此我们需要分两步进行查询操作。首先通过 sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 whereis cudnn,看到 cudnn.h 所在路径 cudnn: /usr/include/cudnn.h。我们根据这个输出结果,把 cudnn.h 之前的 include 路径记住,查询该 include 下的 cudnn_verseion.h 文件:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2,这样就能看到 CUDNN 的版本号了。
    在这里插入图片描述

4. 利用拉取的镜像构建自己的镜像

我们拉取的镜像中只有最基础的 CUDA 和 CUDNN,还没有配置 Anaconda、换源、git 、pip 等常用工具,因此我们将这些可能用到的常用工具将其打包好。

为了构建镜像,我们在用户目录下创建一个名为 mkimage 的目录,在其中放入我们需要的三个内容: Anaconda3-5.2.0-Linux-x86_64.sh、Dockerfile、sources.list,其中 sources.list 是用来给 Ubuntu apt 换源用的。

sources.list 内容如下:

######################################
###### CONTENT for sources.list ######
######################################deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

Dockerfile内容如下:

####################################
###### CONTENT for Dockerfile ######
##################################### Extends from father image [CHANGE WITH YOUR NEED]
FROM nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04# Set locale
ENV DEBIAN_FRONTEND noninteractive# Change anaconda source
# ADD means copy file from host machine to containers
ADD sources.list /etc/apt/
ENV PATH /opt/conda/bin:$PATH# Install basic dependencies
RUN rm /etc/apt/sources.list.d/cuda.list && \rm /etc/apt/sources.list.d/nvidia-ml.listRUN apt-get update && apt-get install -y --no-install-recommends \bzip2 \g++ \git \vim \python-dev \python3-pip \build-essential \wget && \rm -rf /var/lib/apt/lists/*# Install Anaconda for python 3.6
ADD Anaconda3-5.2.0-Linux-x86_64.sh /home/anaconda.sh
RUN /bin/bash /home/anaconda.sh -b -p /opt/conda && \ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \rm /home/anaconda.sh# Change sources for conda, add tsinghua sources and remove defaults
RUN conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/ && \conda config --remove channels defaults# Change sources for pip3
RUN mkdir ~/.pip && \echo "[global]\nindex-url = http://mirrors.aliyun.com/pypi/simple/\n[install]\ntrusted-host = mirrors.aliyun.com" > ~/.pip/pip.conf# Initialize workspace
RUN mkdir /workspace
WORKDIR /workspaceCMD ["/bin/bash"]

其中,Anaconda3-5.2.0-Linux-x86_64.sh 可以在 Anaconda Archive 中找到。

然后,我们可以通过下列指令制作镜像 my-nvidia/cuda:11.2

cd ~/mkimage
sudo docker build -f Dockerfile -t my-nvidia/cuda:11.2 .

经过漫长的等待,我们可以看到一个 Successfully 提示消息,证明我们镜像打包成功。
在这里插入图片描述

构建完成后,我们可以通过下面这个指令进行容器的创建:

sudo docker run -it --gpus all --name cuda_11.2 my-nvidia/cuda:11.2 /bin/bash

进入容器之后,我们可以通过 nvidia-sminvcc -Vconda info 查看当前的显卡驱动、CUDA版本和 conda 源信息。
如果使用 conda 安装包的时候出现了conda Malformed version string ‘~’: invalid character(s)报错,可以使用下面的命令更新一下 conda。

conda upgrade -n base -c defaults --override-channels conda
conda update --all

我这里从 PyTorch 官网中下载了一个对应 CUDA 版本的 torch(我创建了一个名为 pytorch 的 conda 虚拟环境),可以看到在容器中 GPU 资源是可以正常被访问的。这样我们以后就可以随时切换 CUDA 版本了,是不是很方便?
在这里插入图片描述

http://www.yayakq.cn/news/283052/

相关文章:

  • 企业网站源码变现方法国外数据网站
  • 重庆网站建设制作设计公司哪家好刚刚石家庄发生大事了
  • 高端企业网站建设蓦然郑州网站建设6英迈思做网站怎么样
  • 开家网站设计公司中国企业500强招聘
  • 网站建设的展望asp.net网站开发 vs2017
  • 建设项目水资源论证网站中心城网站建设
  • 苏州网站推广如何做服装搭配的流行趋势网站
  • 深圳网络专科网站建设新的网站设计公司
  • 网站空间2000m多少钱网络域名侵权十大案例
  • 心理咨询网站php后台一般需要哪些模块个人网站可以做企业宣传
  • 长春做网站大公司域名注册网站 简称
  • 梧州最权威的综合性新闻门户网站深圳市官网网站建设
  • 襄樊北京网站建设手机wap购物网站模板
  • 在浏览器上建设网站聊城专业网站开发公司
  • 下拉框代码自做生成网站高端网站建设公司名称
  • 网站服务器在百度seo优化是什么
  • 阿里云1核2g服务器能建设几个网站封面设计网站有哪些
  • 做电商网站的参考书做分色找工作网站
  • wordpress多站点怎么修改域名网站建设教程微云网盘
  • 灵宝网站建设商河做网站公司
  • 济南微网站网站建设与管理 第2版
  • 微商城网站建设策划seo是什么意思怎么读
  • 做羞羞的事情网站网站建设的流程简答题
  • 做安全防护信息的网站陕西建设官方网站
  • 莱特币做空国外网站网站制作_做网站_耐思智慧
  • 网站建设主要职责高密做网站哪家好
  • 秦皇岛找一家能建网站的公司国家住房建设部网站
  • 中国网站建设公司 排名廊坊首位关键词优化电话
  • 制作网站需要的技术专业官网设计
  • 贵阳做网站开发科技有限公司福州网站改版哪家好