当前位置: 首页 > news >正文

检测设备技术支持东莞网站建设深圳建网站企业

检测设备技术支持东莞网站建设,深圳建网站企业,门户网站建设思维导图,ps做兼职在什么网站可以找到文章目录 无穷乘积定义:无穷乘积的收敛性命题:无穷乘积的Cauchy收敛准则正项级数和无穷乘积的联系 本篇文章适合个人复习翻阅,不建议新手入门使用 无穷乘积 设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an​}n≥1​,设对任意 …

文章目录

  • 无穷乘积
    • 定义:无穷乘积的收敛性
    • 命题:无穷乘积的Cauchy收敛准则
    • 正项级数和无穷乘积的联系

本篇文章适合个人复习翻阅,不建议新手入门使用

无穷乘积

设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1,设对任意 n , a n ≠ 0 n,a_n\neq 0 n,an=0,称 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 为无穷乘积,称 P n = a 1 ⋅ a 2 ⋯ a n P_n=a_1\cdot a_2\cdots a_n Pn=a1a2an 为部分积

定义:无穷乘积的收敛性

若数列 { P n } n ≥ 1 \{P_n\}_{n\geq 1} {Pn}n1 的极限存在且不为 0 ,则称无穷乘积 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛,记 ∏ n ≥ 1 a n = lim ⁡ n → ∞ P n \prod\limits_{n\geq 1}a_n=\lim\limits_{n\to\infty}P_n n1an=nlimPn

命题:无穷乘积的Cauchy收敛准则

∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛当且仅当对任意 ε > 0 \varepsilon>0 ε>0,存在 N N N ,使得对任意的 n ≥ N n\geq N nN,任意 p ≥ 0 p\geq 0 p0,都有
∣ a n ⋅ a n + 1 ⋯ a n + p − 1 ∣ < ε |a_n\cdot a_{n+1}\cdots a_{n+p}-1|<\varepsilon anan+1an+p1∣<ε

证明思路
必要性:类似实数列的Cauchy收敛准则的证明方法
充分性:只需证 { P n } \{P_n\} {Pn} 是 Cauchy 列(需要先证序列有界),且 lim ⁡ n → ∞ P n ≠ 0 \lim\limits_{n\to\infty}P_n\neq 0 nlimPn=0

正项级数和无穷乘积的联系

命题1

{ a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 是正数的数列,则下列等价

  • ∏ n ≥ 1 ( 1 + a n ) \prod\limits_{n\geq 1}(1+a_n) n1(1+an) 收敛
  • ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明思路:
(1)推(2): ∑ n = 1 k a n ≤ ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 ∞ ( 1 + a n ) \sum\limits_{n=1}^ka_n\leq \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^{\infty}(1+a_n) n=1kann=1k(1+an)n=1(1+an)单调有界数列必收敛
(2)推(1): ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 k e a k ≤ e x p ( ∑ n = 1 k a n ) ≤ e x p ( ∑ n = 1 ∞ a n ) \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^ke^{a_k}\leq exp(\sum\limits_{n=1}^ka_n)\leq exp(\sum\limits_{n=1}^{\infty}a_n) n=1k(1+an)n=1keakexp(n=1kan)exp(n=1an)单调有界数列必收敛

推论
设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 ,若 ∏ n = 1 ∞ ( 1 + ∣ a n ∣ ) \prod\limits_{n=1}^{\infty}(1+|a_n|) n=1(1+an) 收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛。特别地,若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 绝对收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛

证明思路
只需注意到 ∣ ∏ n = k k + p ( 1 + a n ) − 1 ∣ ≤ ∏ n = k k + p ( 1 + ∣ a n ∣ ) − 1 |\prod_{n=k}^{k+p}(1+a_n)-1|\leq \prod_{n=k}^{k+p}(1+|a_n|)-1 n=kk+p(1+an)1∣n=kk+p(1+an)1

命题2
设数列 { a n } \{a_n\} {an} 满足 0 < a n < 1 0<a_n<1 0<an<1,则 ∏ n = 1 ∞ ( 1 − a n ) \prod\limits_{n=1}^{\infty}(1-a_n) n=1(1an) 收敛当且仅当 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明
充分性显然
必要性:用反证法
( 1 − a 1 ) ⋯ ( 1 − a n ) ≤ 1 ( 1 + a 1 ) ⋯ ( 1 + a n ) ≤ 1 1 + a 1 + ⋯ + a n → 0 \begin{split} (1-a_1)\cdots(1-a_n)&\leq \frac{1}{(1+a_1)\cdots(1+a_n)}\\ &\leq \frac{1}{1+a_1+\cdots+a_n}\to 0 \end{split} (1a1)(1an)(1+a1)(1+an)11+a1++an10从而 ∏ n = 1 ∞ ( 1 − a n ) = 0 \prod_{n=1}^{\infty}(1-a_n)=0 n=1(1an)=0 ,矛盾

参考书:

  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
http://www.yayakq.cn/news/433309/

相关文章:

  • 网页设计免费模板网站推荐专做公司网站 大庆
  • wordprees可以做棋类网站吗商城网站建设流程图
  • 临沂网站制作定制有项目去哪里找投资人
  • 中国网站建设哪家公司好门户网站重要性
  • 响应式外贸营销网站九龙坡网站建设公司
  • 上海公司注销流程及费用优化整站
  • 深圳开发公司网站网站设计昆明
  • 网站开发工程师职位概要品牌vi是什么意思
  • 云南网站设计流程江苏企业网站建设价格
  • 一款非常不错的seo网站优化公司源码红河企业网络推广外包
  • 数据库里建设好的网站为什么外网进不去网站ui网页设计图片
  • 服装设计师关键词seo自然排名优化
  • 电子商务网站建设的核心网页设计实验报告3000字
  • 安徽省住房城乡建设厅网站电工网站如何做广告
  • 淄博那里有做网站的国外市场网站推广公司
  • 2021免费正能量网站入口做茶道网站
  • 做网站必须有云虚拟主机企业网站seo外包 s
  • asp系统网站怎么做优化侨联网站建设
  • 软件下载网站知乎wordpress 自定义 sql
  • 一站式网站建设哪家专业个人社团网站怎么做
  • 无水印做海报的网站如何做网站图标
  • 海纳企业网站建设公司网站空间怎么续费
  • 深圳沙井公司网站建设广告网站建设实训报告
  • 太仓网站建设服务网站建设学多长时间
  • 购物网站建设论文答辩国外网站页面设计
  • 装修网站怎么建设云南省住房和建设厅网站
  • wordpress网站怎么建深圳建站推广
  • 哪类公司做网站的最多做企业公司网站
  • 红桥网站建设公司静安正规的设计公司网站
  • 网站建设的时候如何上传图片哪里有免费的网站推广软件啊