当前位置: 首页 > news >正文

石家庄建站模板厂家百度搜索引擎使用技巧

石家庄建站模板厂家,百度搜索引擎使用技巧,企业网站Wap在线生成,佛山市 骏域网站建设TOP-K问题 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等 对于Top-K问题,能想到的最简单直接的方式就是排序,但是…

TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。
举个例子:
有十亿个整形数据,我们的内存时4G,也就是102410241024*8个字节的空间,十亿个整形数据需要的是40亿个字节的空间,就占了内存的一半空间,这是不可行的

最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素,将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素

下面我们进行代码的实现:
首先我们生成1000个随机数,范围再十万以内,放入一个数组中:

srand(time(0));
int* a = (int*)malloc(sizeof(int) * 1000);
if (a == NULL)
{perror("malloc");return 0;
}
for (size_t i = 0; i < 1000; i++)
{a[i] = rand() % 100000;
}

然后我们随机将数组中的任意k个元素改为超过十万的数字,方便验证:

a[7] = 100000 + 1;
a[49] = 100000 + 2;
a[123] = 100000 + 3;
a[456] = 100000 + 4;
a[789] = 100000 + 5;

我们还要用到向下调整算法,以便于建堆:

void swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}
void AdjustDown(int* a, int n, int parent)
{int child = (parent * 2) + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){swap(&a[child], &a[parent]);parent=child;child = parent * 2 + 1;}else{break;}}
}

最后我们将a数组中的前k个元素插入到top_k函数的数组里,然后进行一次向下调整算法,将其调整为大堆,然后再用剩下的n-k个元素与堆顶元素进行比较,如果比他大进替换进堆,然后进行向下调整

void top_k(int* a, int n, int k)
{int i = 0;int* top = (int*)malloc(sizeof(int) * k);if (top == NULL){perror("malloc");return;}for (i = 0; i < k; i++){top[i] = a[i];}for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(top, k, i);}for (i = k; i < 1000; i++){if (a[i] > top[0]){top[0] = a[i];AdjustDown(top, k, 0);}}

完整代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<assert.h>
void swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}
void AdjustDown(int* a, int n, int parent)
{int child = (parent * 2) + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){swap(&a[child], &a[parent]);parent=child;child = parent * 2 + 1;}else{break;}}
}
void top_k(int* a, int n, int k)
{int i = 0;int* top = (int*)malloc(sizeof(int) * k);if (top == NULL){perror("malloc");return;}for (i = 0; i < k; i++){top[i] = a[i];}for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(top, k, i);}for (i = k; i < 1000; i++){if (a[i] > top[0]){top[0] = a[i];AdjustDown(top, k, 0);}}for (i = 0; i < k; i++){printf("%d ", top[i]);}free(top);
}
int main()
{srand(time(0));int* a = (int*)malloc(sizeof(int) * 1000);if (a == NULL){perror("malloc");return 0;}for (size_t i = 0; i < 1000; i++){a[i] = rand() % 100000;}a[7] = 100000 + 1;a[49] = 100000 + 2;a[123] = 100000 + 3;a[456] = 100000 + 4;a[789] = 100000 + 5;int k = 5;top_k(a, 1000, k);
}

向上调整算法和向下调整算法的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
我们令高度为h,节点个数n就等于2^(h)-1个
那么在向上调整算法中:
最坏情况下,最后一层的节点需要向上移动h-1次,依次类推,就得到总次数的表达式,然后再用错位相减法和n和h的关系就能求出时间复杂度f(n)了
在向下调整算法中:
最坏情况下,倒数第二层节点向下只移动一次,第一层最多移动h-1次

总结下来我们就会发现,向上调整算法中是多节点乘多层数的关系,而向下调整算法则是多节点乘少层数的关系,我们进行比较就会发现其实向下调整算法的效率更高,所以在平常的排序和建堆中我们 最常用的还是向下调整算法
在这里插入图片描述
向上调整算法的时间复杂度为:

n*log(n)

向下调整算法的时间复杂度为:

log(n)

因此,向下调整算法的效率是远大于向上调整算法的!
好了,今天的分享到这里就结束了,谢谢大家的支持!

http://www.yayakq.cn/news/868304/

相关文章:

  • 做网站图片如何压缩图片网络营销计划书怎么写
  • 网站建设中的端口游戏网站建设
  • 免费博客平台深圳seo网站优化
  • 对外网站ipv6建设方案模板哪里找专业做网站的人常熟
  • 遵义花果园网站建设直播app开发哪家好
  • 安徽省工程建设安全协会网站源码站
  • 营销型网站优点养老网站建设方案
  • 织梦网站导航浮动做感恩网站的图片大全
  • 淘宝网店开店网站建设wordpress处理大数据
  • 什么网站可以在线做考教师岗位的题上海宏波工程咨询管理有限公司
  • 中国建设银行官网站u盾证书移动端cpu性能天梯图
  • 示范校建设网站维护免费网站根目录
  • 什么网站做h5好wordpress源码商城
  • 网站制作时间怎么在高德地图上添加自己的店铺
  • 哪里可做网站国际网站推广专员招聘
  • dede 网站地图 调用文章宿迁房产网宿迁市区房屋出售
  • 常州微信网站制作微博网站建设
  • 携程网站开发景德镇做网站公司
  • 做网站的登陆功能aspx网站开发
  • 有网站建设需求的网站百度搜索关键词怎么刷上去
  • 关键词整站优化怎么做网站写手
  • 多语言网站广州软件园软件开发公司
  • 采购网站建设聊天软件是怎么开发的
  • 监控摄像头做斗鱼直播网站如何增加网站内链建设
  • 西安优秀的集团门户网站建设公司网站的icp备案信息
  • 大良营销网站建设渠道wechat官方下载
  • 建设银行 上海 招聘网站国际传来10个最新消息
  • 简述建设网站的步骤为什么做金融网站犯法
  • 绍兴h5建站盘多多网盘搜索
  • 网站备案是空间备案还是域名备案个人网站可以备案了吗