当前位置: 首页 > news >正文

酒店网站设计菜单设计制作app

酒店网站设计,菜单设计制作app,网站都有什么类型的,北太平桥网站建设有如下几种计算相似性方法: 点积相似度 X ⋅ Y ∣ X ∣ ∣ Y ∣ c o s θ ∑ i 1 n x i ∗ y i \begin{aligned} X \cdot Y & |X||Y|cos\theta \\ & \sum_{i1}^n x_i * y_i \end{aligned} X⋅Y​∣X∣∣Y∣cosθi1∑n​xi​∗yi​​ 向量内积的结果是没…

有如下几种计算相似性方法:

点积相似度

X ⋅ Y = ∣ X ∣ ∣ Y ∣ c o s θ = ∑ i = 1 n x i ∗ y i \begin{aligned} X \cdot Y &= |X||Y|cos\theta \\ &= \sum_{i=1}^n x_i * y_i \end{aligned} XY=X∣∣Ycosθ=i=1nxiyi

向量内积的结果是没有界限的,解决办法就是先归一化再相乘,就是下面的余弦相似度了。

余弦相似度

X ⋅ Y = ∑ i = 1 n x i ∗ y i ∑ i = 1 n ( x i ) 2 ∗ ∑ i = 1 n ( x i ) 2 X \cdot Y = \frac{\sum_{i=1}^n x_i * y_i}{\sqrt{\sum_{i=1}^n (x_i)^2} * {\sum_{i=1}^n (x_i)^2}} XY=i=1n(xi)2 i=1n(xi)2i=1nxiyi

余弦相似度衡量两个向量在方向上的相似性,并不关注两个向量的实际长度,即对绝对数据不敏感。

示例

用户对内容评分,5分制。A和B两个用户对两个商品的评分分别为A:(1,2)和B:(4,5)。使用余弦相似度得出的结果是0.98,看起来两者极为相似,但从评分上看A不喜欢这两个东西,而B比较喜欢。造成这个现象的原因就在于,余弦相似度没法衡量每个维数值的差异,对数值的不敏感导致了结果的误差。
需要修正这种不合理性,就出现了调整余弦相似度,即所有维度上的数值都减去一个均值。
比如A和B对两部电影评分的均值分别是(1+4)/2=2.5,(2+5)/2=3.5。那么调整后为A和B的评分分别是:(-1.5,-1.5)和(1.5,2.5),再用余弦相似度计算,得到-0.98,相似度为负值,显然更加符合现实。

注:为什么是在所有用户对同一物品的打分上求均值,每个人打分标准不一,对所有用户求均值,等于是所有用户的打分映射到了同一空间内。上述是在计算两个用户的相似度,以此类推计算两个物品的相似度,就要计算所有物品的均值了。

修正的余弦相似度可以说就是对余弦相似度进行归一化处理的算法,公式如下:
s ( A , B ) = ∑ i ∈ I ( R A , i − R i ˉ ) ( R B , i − R i ˉ ) ∑ i ∈ I ( R A , i − R i ˉ ) 2 ∑ i ∈ I ( R B , i − R i ˉ ) 2 s(A, B)=\frac{\sum_{i \in I}\left(R_{A, i}-\bar{R_i}\right)\left(R_{B, i}-\bar{R_i}\right)}{\sqrt{\sum_{i \in I}\left(R_{A, i}-\bar{R_i}\right)^2} \sqrt{\sum_{i \in I}\left(R_{B, i}-\bar{R_i}\right)^2}} s(A,B)=iI(RA,iRiˉ)2 iI(RB,iRiˉ)2 iI(RA,iRiˉ)(RB,iRiˉ)
R A , i R_{A,i} RA,i 表示用户A在商品i上的打分, R i ˉ \bar{R_i} Riˉ表示商品i在所有用户上的打分均值。

皮尔逊相关系数

Pearson 相关系数是用来检测两个连续型变量之间线性相关的程度,它解决了余弦相似度会收到向量平移影响的问题。取值范围为 [−1,1],正值表示正相关,负值表示负相关,绝对值越大表示线性相关程度越高:
ρ x , y = cov ⁡ ( x , y ) σ x σ y = E [ ( x − μ x , y − μ y ) ] σ x σ y = ∑ i ( x i − x ˉ ) ( y i − y ˉ ) ∑ i ( x i − x ˉ ) 2 ∑ i ( y i − y ˉ ) 2 \begin{aligned} \rho_{\boldsymbol{x}, \boldsymbol{y}} &= \frac{\operatorname{cov}(\boldsymbol{x}, \boldsymbol{y})}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}} \\ &= \frac{E\left[\left(\boldsymbol{x}-\mu_{\boldsymbol{x}}, \boldsymbol{y}-\mu_{\boldsymbol{y}}\right)\right]}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}} \\ &= \frac{\sum_i\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_i\left(x_i-\bar{x}\right)^2} \sqrt{\sum_i\left(y_i-\bar{y}\right)^2}} \end{aligned} ρx,y=σxσycov(x,y)=σxσyE[(xμx,yμy)]=i(xixˉ)2 i(yiyˉ)2 i(xixˉ)(yiyˉ)
如果把 x ′ = x − x ˉ , y ′ = y − y ˉ x'=x-\bar{x}, y'=y-\bar{y} x=xxˉ,y=yyˉ ,那么皮尔逊系数计算的就是 x ′ 和 y ′ x' 和 y' xy 的余弦相似度。


参考

  • 点积相似度、余弦相似度、欧几里得相似度
  • 常用的特征选择方法之 Pearson 相关系数
  • 图片向量相似检索服务(2)——四种基本距离计算原理
    • 这篇博客倒是很简洁,适合速读
  • 点积相似度、余弦相似度、欧几里得相似度
  • 相似性和距离度量 (Similarity & Distance Measurement)
http://www.yayakq.cn/news/547188/

相关文章:

  • 如何自建公司网站各大电商平台的销售数据
  • 做公司网站需要什么手续风雨同舟网站建设
  • 做竞赛的平台或网站旅游网页设计图
  • 开发一个网站系统报价域名地址大全
  • 谈谈网站建设的主要内容qq企业邮箱下载
  • 商城网站程序自己做网站可以赚钱吗
  • 城乡建设网站人力资源开发一个小程序一般需要多少钱呢
  • 网站开发要用到的工具公司电话
  • 如何做网站推广及优化网站的管理包括
  • 仙桃网站优化枣庄建网站的公司
  • 个人做网站赚钱么wordpress手机端显示分类
  • wap站点网站建设与运营财务报表
  • 免费企业建站开源系统外贸采购平台推荐
  • 做网站素材php网站备份
  • 网站开发数据库有关合同象山经济开发区建设有限公司网站
  • 郑州搜狗网站建设响应式网站如何做的
  • 长沙有效的可以看的网站济南企业网站制作费用
  • 微营销方案网格搜索优化
  • 企业wap网站模板淮北论坛官网
  • 网站建设技术合同模板下载百度平台商户电话号码
  • 网站开发用啥语言就业前景好的10大专业
  • 山东省机关建设网站如何生成一个网站
  • tomcat做网站永安市住房与城乡建设局网站
  • 有创意的婚纱网站模板福州网站建设报价
  • 手机怎么开网站wordpress 增加语言
  • 企业网站建设注意点企业邮箱哪个比较好用
  • 用服务器ip可以做网站吗网站开发用什么技术可行性
  • 网站安全建设论文网上购物都有哪些网站
  • 荣耀手机商城官方网站登录入口网站建设需要什么证件
  • 一级做爰片软件网站太原seo顾问