当前位置: 首页 > news >正文

网站新闻发布后前台不显示凤凰自媒体平台注册

网站新闻发布后前台不显示,凤凰自媒体平台注册,分类信息网站成都搭建,网络营销方案DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵 flyfish 状态转移矩阵(State Transition Matrix)F的构造 这篇是一定要看的,拖到文章的最后部分,需要理解状态转移矩阵怎么来的,怎么是这个…

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

flyfish

状态转移矩阵(State Transition Matrix)F的构造

这篇是一定要看的,拖到文章的最后部分,需要理解状态转移矩阵怎么来的,怎么是这个样子

状态向量(State Vector)

状态向量描述系统在某个时间点的完整状态。它通常包括多个变量,例如位置、速度、加速度等,具体取决于系统的动态特性。

  • 记作 x k \mathbf{x}_k xk,其中 k k k 是时间步长。

状态转移矩阵(State Transition Matrix)

状态转移矩阵描述系统从一个时间点到下一个时间点的状态变化。它反映了状态向量的演化。

  • 记作 A k \mathbf{A}_k Ak,用于将状态向量从 x k − 1 \mathbf{x}_{k-1} xk1 转移到 x k \mathbf{x}_k xk
    x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1

  • 状态向量与状态转移矩阵:状态转移矩阵 A k \mathbf{A}_k Ak 描述了状态向量 x k \mathbf{x}_k xk 如何从时间 k − 1 k-1 k1 转移到时间 k k k。例如,对于一个简单的运动模型,状态向量可能包括位置和速度,而状态转移矩阵描述了位置和速度在每个时间步长中的变化。例如,对于一个匀速直线运动模型,状态向量和状态转移矩阵可以表示为: x k = [ x k x ˙ k ] , A k = [ 1 Δ t 0 1 ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix}, \quad \mathbf{A}_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} xk=[xkx˙k],Ak=[10Δt1]这里, Δ t \Delta t Δt 是时间步长。

假设我们要跟踪一个在平面上运动的物体,其状态包括位置和速度:

  • 状态向量 x k \mathbf{x}_k xk: x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k 这里 x k x_k xk y k y_k yk 是位置, x ˙ k \dot{x}_k x˙k y ˙ k \dot{y}_k y˙k 是速度。
  • 状态转移矩阵 A k \mathbf{A}_k Ak: A k = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A}_k = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Ak= 10000100Δt0100Δt01 这表示位置随时间步长 Δ t \Delta t Δt 变化。
状态预测

给定当前时间步长 k − 1 k-1 k1 的状态向量 x k − 1 \mathbf{x}_{k-1} xk1 和状态转移矩阵 A k − 1 \mathbf{A}_{k-1} Ak1,下一个时间步长 k k k 的预测状态向量 x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 可以表示为:
x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵,描述了系统的动态特性。
  • B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵,描述了控制输入如何影响系统状态。
  • u k − 1 \mathbf{u}_{k-1} uk1 是控制输入向量,包含外部施加的控制量。
误差协方差预测

误差协方差矩阵 P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 也需要更新,以反映预测状态的不确定性。预测步骤的误差协方差矩阵更新公式为:
P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1 是当前时间步长 k − 1 k-1 k1 的误差协方差矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵,反映了模型中未捕捉到的不确定性。

例子

假设我们要跟踪一个在平面上运动的物体,其状态向量包括位置和速度:
x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k
假设物体做匀速直线运动,状态转移矩阵可以表示为:
A = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A= 10000100Δt0100Δt01
在没有控制输入的情况下,预测状态的计算如下:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1
假设上一时间步长的状态向量为:
x k − 1 = [ 10 15 1 − 1 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} xk1= 101511
其中,物体在位置 ( 10 , 15 ) (10, 15) (10,15) 处,速度为 ( 1 , − 1 ) (1, -1) (1,1) 米每秒,时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

状态转移计算为:
x ^ k ∣ k − 1 = [ 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 ] [ 10 15 1 − 1 ] = [ 10 + 1 15 − 1 1 − 1 ] = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 + 1 \\ 15 - 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 1000010010100101 101511 = 10+115111 = 111411
因此,通过状态转移矩阵,得到了下一个时间步长的预测状态向量 x ^ k ∣ k − 1 = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 111411

在卡尔曼滤波中,控制输入(control input)指的是系统在每个时间步长可以施加的外部影响或干预。控制输入常用于表示可以影响系统状态的外部因素,例如驾驶员对汽车的操控、无人机的推力指令等。

控制输入的作用

控制输入用于描述外部控制如何影响系统状态的变化。它在状态转移方程中起到了修正预测状态的作用,帮助更准确地反映系统的动态。

控制输入的数学描述

状态转移方程中引入控制输入项,使状态更新更全面:
x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1
其中:

  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统的内在动力学。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:控制输入向量,表示外部施加的控制。
  • w k − 1 \mathbf{w}_{k-1} wk1:过程噪声,表示模型中未捕捉到的随机扰动。

示例

假设我们在跟踪一辆汽车,状态向量包括位置和速度:
x k = [ x k x ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix} xk=[xkx˙k]

无控制输入的情况

状态转移矩阵假设汽车做匀速运动:
A = [ 1 Δ t 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} A=[10Δt1]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1

有控制输入的情况

假设汽车可以通过加速或减速改变速度,控制输入向量表示加速度:
u k = a k \mathbf{u}_k = a_k uk=ak
控制输入矩阵描述加速度对速度和位置的影响:
B = [ 0.5 Δ t 2 Δ t ] \mathbf{B} = \begin{bmatrix} 0.5 \Delta t^2 \\ \Delta t \end{bmatrix} B=[0.5Δt2Δt]
状态转移方程引入控制输入后变为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} x^kk1=Axk1+Buk1

具体计算

假设上一时间步的状态向量为:
x k − 1 = [ 10 5 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} xk1=[105]
其中,位置为10米,速度为5米每秒。时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

如果加速度为2米每秒平方( a k = 2 a_k = 2 ak=2),则控制输入向量为:
u k − 1 = 2 \mathbf{u}_{k-1} = 2 uk1=2
状态转移矩阵和控制输入矩阵为:
A = [ 1 1 0 1 ] , B = [ 0.5 1 ] \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} A=[1011],B=[0.51]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 = [ 1 1 0 1 ] [ 10 5 ] + [ 0.5 1 ] ⋅ 2 = [ 15 5 ] + [ 1 2 ] = [ 16 7 ] \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 5 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \cdot 2 = \begin{bmatrix} 15 \\ 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 7 \end{bmatrix} x^kk1=Axk1+Buk1=[1011][105]+[0.51]2=[155]+[12]=[167]
因此,通过引入控制输入,预测得到下一时间步的位置为16米,速度为7米每秒。

在卡尔曼滤波中,测量向量通过观测矩阵可以得到与实际测量值进行比较的预测测量值。这是滤波器更新步骤中的一个关键部分,用于校正预测的状态。

http://www.yayakq.cn/news/257607/

相关文章:

  • 做论坛和做网站有什么区别石家庄外贸公司网站设计公司
  • 中通建设计院第四分公司网站宝塔建站工具
  • 上海交通大学毕业设计网站网络文化经营许可证申请
  • 接单做网站怎么开价格网站开发者工作内容
  • 如何 html5 网站公司网站建设费用会计处理
  • 校园网页设计模板简单郑州网站优化技巧
  • 受欢迎的网站建设上海住房和城乡建设厅网站首页
  • 网站建设色抖音推广有几种方式
  • 江苏建筑网站建设郑州seo哪家好
  • wordpress资源下载主题百度seo关键词排名查询工具
  • 营销型网站的运营配套不包括傻瓜式制作app的软件
  • 开发软件的网站平台长辛店网站建设
  • 做电商网站要服务器吗商业策划书范文6篇
  • 凡客诚品现状2022青岛seo优化
  • 甘肃住房和城乡建设厅网站首页网站改版设计费进什么科目
  • 大型企业网站企业网站建设需要哪些资料信息
  • 怎样做网站seo做食物网站应该考虑些什么意思
  • 6生肖竞猜网站建设广告文案的100案例
  • 达州网站建设yufanse网站重新建设的通知
  • html5 网站模版网站建设制作 南京公司
  • 免费建网站那个好用商标做网站名字
  • 苏州做网站好的公司短视频seo排名加盟
  • 建设外卖网站规划书网站宣传推广
  • 山西建设厅网站建筑类专业做教育的网站
  • 给个网站可以在线佛山网站建设公司88
  • 三网合一网站建设计划上海代理注册公司
  • 买网站主机wordpress检索蜘蛛插件
  • 温州最便宜网站建设上海建设工程交易网
  • 微商城网站建设合同下载wordpress模板文件
  • 微电影网站源码推广型网站建设模板