当前位置: 首页 > news >正文

徐州开发的网站如何建设传奇网站

徐州开发的网站,如何建设传奇网站,装修网站设计师,提升学历英语翻译目录 1.Apriori算法 Apriori性质 伪代码 apriori算法 apriori-gen(Lk-1)【候选集产生】 has_infrequent_subset(c,Lx-1)【判断候选集元素】 例题 求频繁项集: 对于频繁项集L{B,C,E},可以得到哪些关联规则: 2.FP-growth算法 FP-tre…

目录

1.Apriori算法

Apriori性质

伪代码

apriori算法

apriori-gen(Lk-1)【候选集产生】

has_infrequent_subset(c,Lx-1)【判断候选集元素】

例题

求频繁项集:

对于频繁项集L={B,C,E},可以得到哪些关联规则:

2.FP-growth算法

FP-tree构造算法【自顶向下建树】

insert_tree([plP],T)

利用FP-tree挖掘频繁项集


 

关联规则挖掘是数据挖掘领域中研究最为广泛的也最为活跃的方法之一

关联规则反应了一个事物和其他事物之间的相互依存性和关联性

如果存在一定的关联关系,其中一个事物就可以通过其他事物预测到

最小支持度:就是说当支持度达到一定的阈值后,某种数据才有被挖掘的潜力这个阈值就是最小支持度计数(min_sup)。

频繁项集:当某种数据的支持度超过最小支持计数阈值时就叫做频繁项集。

1.Apriori算法

Apriori算法是R.Agrawal和R.Srikant于1994年提出的为布尔关联规则挖掘频繁项集的原创性算法。

主要有以下几个步骤:首先通过扫描数据库积累每个项的计数,并收集满足最小支持度的项,找出频繁1-项集的集合(该集合记做L1)。然后L1用于找到频繁2-项集的集合L2,利用L2再找到L3,如此下去直到不能再找到频繁k-项集为止。

Apriori性质

频繁项集的所有非空子集也必须是频繁的。

非频繁项集的所有超集也必须是频繁的。

主要用于压缩拽索空间,从而更快地找到频繁项集。

伪代码

摘自《数据挖掘:方法与应用》徐华著

apriori算法

输人:数据集D;最小支持度计数minsup_count。
输出:频繁项目集L。//所有支持度不小于minsupport的1-项集
L1={频繁1-项集};
Ck=apriori-gen (L-1);//C是k个元素的候选集
for(k=2;Lk-1≠0;k++)
for all transaction t属于D
Ct=subset(Ck,t);
for all candidates c属于Ct
c.count++;
End for
End for
Lk={c∈Ck|c.count>=minsup_count}
End for
L=ULk

apriori-gen(Lk-1)【候选集产生】

输入:(k-1)-项集
输出:k-候选集C。
for all itemset p∈Lk-1
for all itemset q∈Lk-1
if (p.item1=q.item1, p.item2=q.item2,…,p.itemk-2=q.itemk-2,p.itemk-1<q.itemk-1)
c=p∞q;
if(has_infrequent_subset(c,Lx-1)) delete c;
else add c to Ck;
End for
End for
Return Ck

has_infrequent_subset(c,Lx-1)【判断候选集元素】

输入:一个k-项集c,(k-1)-项集Lk-1
输出:c是否从候选集中删除。
for all (k-l)-subsets of c
if S不属于Lk-1
return true;
return false

例题

假设最小支持度是2

求频繁项集:

  •  频繁1-项集L1{A},{B},{C},{E};
  •  频繁2-项集L2:{A,C},{B,C},{B,E},{C,E};
  •  频繁3-项集L3:{B,C,E};

 说白了就是找哪种组合出现的次数>=2。

对于频繁项集L={B,C,E},可以得到哪些关联规则:

  • B->C,Econfidence=2/2=100%
  • C->B,Econfidence=2/3=67%
  • E->B,Cconfidence=2/2=100%
  • C,E->Bconfidence=2/3=67%
  • B,E->Cconfidence=2/3=67%
  • B,C->Econfidence=2/3=67%

2.FP-growth算法

FP-growth算法主要采用如下的分治策略:首先将提供频繁项的数据库压缩到一个频繁模式树(FP-tree),但仍保留相关信息。然后将压缩后的数据库划分成一组条件数据库,每个关联一个频繁项或“模式段”,并分别挖掘每个条件数据库。

FP-tree构造算法【自顶向下建树】

输人:事务数据库DB;最小支持度阈值Minsupport。

输出:FP-tree树。

(1)扫描事务数据库D一次。收集频繁项集合E以及它们的支持度计数,对F按照支持度计数降序排序,得到频繁项列表L。

(2)创建FP-tree的根节点,以“null"标记它。对于D中的每个事务T,作如下处理:选择T中的频繁项,并按照L中的次序进行排序,排序后的频繁项标记为[plP],其中p是第一个元素,P是剩余元素的表。调用insert_tree([plP],T)将此元组对应的信息加入到T中。

insert_tree([plP],T)

构造FP-tree算法的核心是insert_tree过程。Insert_tree过程是对数据库的一个候选项目集的处理,它对排序后的一个项目集的所有项目进行递归式的处理直到项目表为空。 

(1)if(T有一个子女N使得N.item-name=p.item-name)

(2)N的计数加一

(3) else

(4)创建一个新节点N,将其计数设为1,链接到它的父节点T,并通过节点链结构将其链接到具有相同项名的节点。

(5)如果P非空,递归地调用insert_tree(P,N)。 

利用FP-tree挖掘频繁项集

输入:构造好的FP-tree,事务数据库D,最小支持度阈值Minsupport。 

输出:频繁项集。FP-growth(Tree,α)

(1)if(Tree含单个路径P)

(2)for路径P中节点的每个组合(记作β)

(3)产生模式βUα,其支持度support=β中节点的最小支持度

(4)else for each ai 在Tree的头部{

(5)产生一个模式β=aiUα,其支持度support=ai.support;

(6)构造β的条件模式基,然后构造β的条件FP-树Treeß;

(7) if Treeβ≠0 then

(8)调用FP_growth(Treeβ,β); 

参考资料《数据挖掘:方法与应用》徐华著

http://www.yayakq.cn/news/410574/

相关文章:

  • 做出口的网站宁德网页设计
  • 做网站 每月赚 钱wordpress扒站教程
  • 模板网站免费自己的网站没有域名
  • 网站平台定制开发少儿编程加盟费多少钱
  • 海南住房与建设厅网站网络营销的10个特点
  • 定州网站设计网站培训机构有哪些
  • 模板建站服务公司网站界面设计论文
  • 高端的咨询行业网站设计.net和php那个做网站好
  • 京东网站建设缺点备案 手机网站
  • 沈阳网站哪家做的好旅游网站建设导航栏
  • 网站建设专业吗深圳洲聚网站建设
  • 网站开发按几年摊销转发文章赚钱的网站建设
  • 网站怎么建设与管理如何看网站有没有收录
  • 门户网站的基本功能单页面网站如何优化引流
  • 福州建网站wordpress右侧广告位
  • 安装安全狗网站打不开视频制作课程
  • 保险咨询网站留电话h5商城网站开发
  • 网站做的不好会有什么后果搜索引擎优化自然排名的缺点
  • 供需平台类网站建设怎么做免费公司网站
  • 擦边球做网站挣钱模板网站建设代理商
  • 起名网站怎么做做服饰的有哪些网站
  • 上海网站建设优化公司音乐网站建设报告
  • wordpress php版本太低wordpress安全优化教程
  • 广东营销网站制作电脑版网页登录入口
  • 做英语教具的网站缩短网址在线生成
  • 企业做网站需注意什么批量查询权重
  • 华建建设集团网站化肥厂的网站摸板
  • 成都网站建设有哪些邯郸品牌策划设计
  • 网站整站程序查企业免费
  • 东莞教育平台网站建设做一个网站设计要多少钱