当前位置: 首页 > news >正文

国外空间设计网站中国建筑总公司官网首页

国外空间设计网站,中国建筑总公司官网首页,wordpress 自定义feed,各大搜索引擎提交入口地址本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。 零、预修 0.1 LU分解 设,若对于,均有,则存在下三角矩阵和上三角矩阵,使得。 设,若对于,均有,则存在唯一的下三…

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n-1 \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在唯一的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U},并且\left |A \right |=U\left ( 1,1 \right )U\left ( 2,2 \right )\cdots U\left ( n,n \right )

0.2 Cholesky分解

\boldsymbol{A}\in \mathbb{R}^{n\times n}对称正定,则存在一个对角元均为正数的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{L}^{T}

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}\boldsymbol{b}\in \mathbb{R}^{n},使用迭代法求解线性方程组\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}过程中,一般需要以下流程进行:

  1. 给定一个初始向量\boldsymbol{x}_{0}
  2. 构造一个递推公式\boldsymbol{x}_{k+1}=\boldsymbol{f}\left ( \boldsymbol{x}_{k},\boldsymbol{A},\mathbf{b} \right )
  3. 不断递推\boldsymbol{x}_{k+1},使其近似收敛于\boldsymbol{x}_{*}

下表列出了若干迭代算法的迭代公式。

方法\boldsymbol{A}迭代公式备注
Jacobi迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\boldsymbol{D}^{-1}\left ( \boldsymbol{L}+\boldsymbol{U} \right ) \boldsymbol{x}_{k-1}+\boldsymbol{D}^{-1}\boldsymbol{b}
Gausss-Seidel迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\left ( \boldsymbol{D}-\boldsymbol{L }\right )^{-1}\boldsymbol{U}\boldsymbol{x}_{k-1}+\left ( \boldsymbol{D}-\boldsymbol{L} \right )^{-1}b
SOR迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{L}_{\omega }=\left ( \boldsymbol{D}-\omega \boldsymbol{L}\right )^{-1} \left ( \left ( 1-\omega \right )\boldsymbol{D}+\omega \boldsymbol{U} \right )\\ \boldsymbol{x}_{k+1}= \boldsymbol{L}_{\omega }\boldsymbol{x}_{k}+\omega \left ( \boldsymbol{D}-\omega \boldsymbol{L} \right )^{-1}\boldsymbol{b}
Steepest Descent对称正定\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}
Conjugate Gradient对称正定

k=1

     \boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}

k>1

    \alpha _{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k} \\ \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha _{k}\boldsymbol{A}\boldsymbol{p}_{k} \\ \beta _{k}=\frac{\boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1}}{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}\\ \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta _{k}\boldsymbol{p}_{k}

二、Projection Method

投影法将线性方程组求解问题转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x},构造列满秩矩阵\mathcal{K}\in \mathbb{R}^{n\times m}\mathcal{L}\in \mathbb{R}^{n\times m},寻找\boldsymbol{\tilde{x}}\in\mathcal{K},满足Petrov-Galerkin条件,即\forall \boldsymbol{y}\in \mathcal{L},均有\mathcal{L}^{T}\left ( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\tilde{x}} \right )=\boldsymbol{0}\mathcal{K}称为搜索空间,\mathcal{L}称为约束空间。若\mathcal{L}=\mathcal{K}时,称为正投影算法,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法本质上也是一种投影法,其核心思想是在更小维度的Krylov子空间内寻找满足精度要求的近似解。即令\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}_{0},构造了mKrylov子空间\mathcal{K}\left ( \boldsymbol{A},\boldsymbol{r}_{0} \right )=span\left ( \boldsymbol{r}_{0} , \boldsymbol{A}\boldsymbol{r}_{0}, \boldsymbol{A}^{2} \boldsymbol{r}_{0},\cdots ,\boldsymbol{A}^{m-1}\boldsymbol{r}_{0} \right ),使得\mathcal{L}^{T}\left (\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \right )=\boldsymbol{0}

选择不同的\mathcal{L},就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

3.3 Preconditioned Conjugate Gradient

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952. 

http://www.yayakq.cn/news/351341/

相关文章:

  • 能打开各种网站的浏览器下载合集免费网络课程
  • 无锡网站排名系统邢台做网站咨询
  • 广州网站导航wordpress仿百度文件
  • 杭州外贸网站制作网站开发需要的准备
  • 做网站如何防止被骗温州网站设计平台
  • 织梦网站登录阎良建设局 网站
  • 网站建设安全制度图片ui设计与艺术设计区别
  • 网站源代码怎么放入 dede网站后台千锋python培训
  • 网站备案的影响全国做网站哪家好
  • 安徽网站建设 网新集团网站建设招标
  • dede网站不能够生成做SEO用dede还是wordpress
  • 广州外贸营销网站建设公司wordpress 后台样式修改
  • iis的网站登录没反应如何做企业产品推广
  • er图关于网站建设物业公司网站建设策划书
  • 怎么在word里做网站福永外贸网站建设
  • 哪些网站设计的好wordpress开发网站
  • 网页建站费用学校网站的作用
  • 内蒙古建设厅公示网站WordPress免费自动采集
  • 青岛建设大学招聘信息网站谷歌浏览器官网下载安装
  • 小说网站的内容做网站建设如何来选择空间
  • 青海公司网站建设哪家好东莞市南华职业技术学校
  • 品牌网站开发价格做广告在哪个网站做效果人流最多
  • 海西高端网站建设公司django 电商网站开发
  • 首页有动效的网站建站平台控制
  • 图片分类展示网站源码住房城乡建设厅网站准考证
  • 新浪做网站网页翻译在哪
  • 做一个网站 多少钱建设的比较好的档案馆网站
  • 查网站二级域名做电商哪几个设计网站比较好
  • 重庆网站建安康服务好的网络公司
  • 怎么用手机黑网站手机上怎么支持wap网站