当前位置: 首页 > news >正文

深圳网站建站公司渭南市建设局网站

深圳网站建站公司,渭南市建设局网站,青岛建站公司推荐,百度关键词排名神器目录 一、环境搭建 1.1 配置matplotlib库 1.2 配置seaborn库 1.3 配置Skimage库 二、二维图像 2.1 曲线(直线)可视化 2.2 曲线(虚线)可视化 2.3 直方图 2.4 阶梯图 三、三维图像 3.1 3D曲面图 3.2 3D散点图 3.3 3D散…

目录

一、环境搭建

1.1 配置matplotlib库

1.2 配置seaborn库

1.3 配置Skimage库

二、二维图像

2.1 曲线(直线)可视化

2.2 曲线(虚线)可视化

2.3 直方图

2.4 阶梯图

三、三维图像

3.1 3D曲面图

3.2 3D散点图

3.3 3D散点图


        Matplotlib库是一款功能强大且灵活的Python数据可视化软件包,它支持跨平台运行,能够根据NumPy ndarray数组绘制高质量的2D图像(也支持部分3D图像)。Matplotlib提供了类MATLAB的绘图API,使得绘图过程简单直观,代码清晰易懂。它广泛应用于数据分析、科学研究、报告生成以及教育与培训等领域,用户可以通过它创建多样化的图表类型,如折线图、柱状图、散点图等,并对图表的各个元素进行高度定制化的调整。无论是简单的图表还是复杂的可视化需求,Matplotlib都能提供高质量的输出。

一、环境搭建

1.1 配置matplotlib库

pip install matplotlib

安装成功展示图: 

1.2 配置seaborn库

pip install seaborn

 安装成功展示图: 

1.3 配置Skimage库

pip install scikit-image

 安装成功展示图: 

二、二维图像

2.1 曲线(直线)可视化

import matplotlib.pyplot as plt
import numpy as npX = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 绘制线
plt.plot(X, Y, color='red')
plt.xlabel('X')
plt.ylabel('Y')
# 设置图像标题名
plt.title("y = sin(X)")
# 是否添加网格
plt.grid(True)
# 绘制图像
plt.show()

2.2 曲线(虚线)可视化

import matplotlib.pyplot as plt
import numpy as npX = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 绘制线 蓝色 虚线
plt.plot(X, Y, "b-.")
plt.xlabel(r"$\alpha$")
plt.ylabel(r"$\beta$")
# 设置图像标题名
plt.title("$y=\sum sin(x)$")
# 是否添加网格
plt.grid(True)
# 绘制图像
plt.show()

2.3 直方图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)X = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 生成数据
data = np.random.randn(200, 1)
# 可视化
plt.hist(data, 10)
plt.xlabel("取值")
plt.ylabel("频数")
plt.title("直方")
# 绘制图像
plt.show()

2.4 阶梯图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticksmatplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)X = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 阶梯图设置
plt.step(X, Y, c = "r", label = "sin(x)", linewidth = 3)
# 添加辅助线
plt.plot(X, Y, "o--", color = "grey", alpha = 0.5)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Bar")
# 设置图例位置及大小
plt.legend(loc = "lower right", fontsize = "small")
# 设置X轴坐标系取值
xtick = [0, 5, 10, 15]
xticklabels = [str(x) + "万" for x in xtick]
# x轴的坐标取值,倾斜度为45°
plt.xticks(xtick, xticklabels, rotation = 45)
# 调整水平空间距离
plt.subplots_adjust(hspace = 0.5)
plt.show()

三、三维图像

3.1 3D曲面图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)x = np.linspace(-4, 4, num = 50)
y = np.linspace(-4, 4, num = 50)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# 3D曲面图可视化
fig = plt.figure(figsize=(6, 5))
# 设置3D坐标
ax1 = fig.add_subplot(1, 1, 1, projection = '3d')
# 绘制曲面图, rstride:行的跨度 cstride:列的跨度 alpha:透明度 cmap:颜色
ax1.plot_surface(X, Y, Z, rstride = 1, cstride = 1, alpha = 0.5, cmap = plt.cm.coolwarm)
# 绘制z轴方向的等高线
cset = ax1.contourf(X, Y, Z, zdir = 'z', offset = 1, cmap = plt.cm.CMRmap)
ax1.set_xlabel("X")
ax1.set_xlim(-4, 4)
ax1.set_ylabel("Y")
ax1.set_ylim(-4, 4)
ax1.set_zlabel("Z")
ax1.set_zlim(-1, 1)
ax1.set_title("曲面图和等高线")
plt.show()

 

3.2 3D散点图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
x = np.cos(theta)
y = np.sin(theta)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
# 在子图中绘制三维图像
fig = plt.figure(figsize=(10, 10))
# 将坐标系设置为3D坐标系
ax1 = fig.add_subplot(1, 1, 1, projection='3d')
ax1.plot(x, y, z, "b-")
ax1.view_init(elev = 20, azim = 25)
ax1.set_title("3D曲线图")
plt.show()

 

3.3 3D散点图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
x = np.cos(theta)
y = np.sin(theta)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
# 在子图中绘制三维图像
fig = plt.figure(figsize=(10, 10))
# 将坐标系设置为3D坐标系
ax1 = plt.subplot(1, 1, 1, projection='3d')
ax1.scatter3D(x, y, z, c = "r", s = 20)
ax1.view_init(elev = 20, azim = 25)
ax1.set_title("3D散点图")
plt.show()

上一篇文章:Python的pandas库基础知识(超详细教学)-CSDN博客https://blog.csdn.net/Z0412_J0103/article/details/144849671https://blog.csdn.net/Z0412_J0103/article/details/144849671icon-default.png?t=O83Ahttps://blog.csdn.net/Z0412_J0103/article/details/144849671下一篇文章:Python实现简单的缺失值处理(超详细教程)-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Z0412_J0103/article/details/144956087

http://www.yayakq.cn/news/678486/

相关文章:

  • 建设银行手机银行官方网站下载东莞快速优化排名
  • 吴江区桃源镇做网站电子商务网站建设调查报告
  • wordpress网站提速西安做网站首选
  • 连接器零售在什么网站做给网站做游戏视频怎么赚钱
  • 网站建设哪里好 厦门水果网站建设方案
  • 百度能做网站建设吗建设部网站监理公告
  • 0基础学做网站深圳网站建设10强
  • 网站建设合同要交印花吗阿勒泰地区住建设局网站
  • 济南网站seo优化网页界面设计的类别
  • 能否设置网站做局域网建立和创立的区别
  • 拿品牌做网站算侵权吗免费下载个人简历表格
  • 仙居网站开发施工企业破产质保
  • 设计师推荐网站欣赏网站建设项目环境影响评价目录
  • 汽车门户网站建设房屋平面设计软件手机版
  • 网站建设收获软件网站开发公司名字
  • 网站建设与管理视频教程在安徽省住房和城乡建设厅网站
  • 用友加密狗注册网站WordPress协会主题模板
  • php制作网站网站数据库连接出错
  • 网站seo诊断优化分析该怎么做北京建站公司哪家好
  • 工程建设公司网站网址怎么创建
  • 公司网站不用了如何注销自己做的网站怎么排名
  • 网站开发通过什么途径接活河北师大科技楼网站建设
  • 网站建设 事业单位 安全厦门seo优化外包公司
  • 苏州建站公司兴田德润简介呢海外网络推广外包
  • 双语网站代码线上做笔记的网站
  • 网站优化北京哪家强?浙江天奥建设集团网站
  • 滕州微信网站石家庄学生
  • muse怎么做响应式网站网站免费的正能量漫画
  • 昆明做网站找启搜网络黑龙江建筑施工管理平台
  • 南昌制作网站的公司吗网站首页的head标签内