当前位置: 首页 > news >正文

网站建设技术方面的论文网站怎么吸引人

网站建设技术方面的论文,网站怎么吸引人,营销外贸网站建设,自己在线制作logo免费广告招牌智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工大猩猩部队算法4.实验参…

智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工大猩猩部队算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工大猩猩部队算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工大猩猩部队算法

人工大猩猩部队算法原理请参考:https://blog.csdn.net/u011835903/article/details/123047637
人工大猩猩部队算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工大猩猩部队算法参数如下:

%% 设定人工大猩猩部队优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工大猩猩部队算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

http://www.yayakq.cn/news/662227/

相关文章:

  • 网站建设中 模板 下载wordpress控件图标
  • 网络营销网站分析商业网站策划书范文
  • 重庆大足网站建设常见的搜索引擎有哪些?
  • 想接做网站的单子苏州高端网站设计机构
  • WordPress去掉网站留言框企业备案网站名称要求
  • 网站怎么快速做排名怎样做彩票投资网站
  • 做网站多少钱一张页面自己做培训需要网站吗
  • 绿化面积 建设网站最新网域查询入口
  • 网站源代码怎么生成网页哈尔滨seo服务
  • 程序员做的导航网站网站套餐到期什么意思
  • 如何修改dns 快速使用境外网站学做软件的网站有哪些内容
  • 网站的查询功能是怎样做的都匀网站建设公司
  • 用于制作网站的软件网站如何做熊掌号
  • 企业网站搭建程序网站建设维护php
  • 江苏省建设厅网站施工员证查询用什么做公司宣传网站
  • 现在网站给源码深圳注册公司流程和费用
  • 设计素材网站黄金烤肠柯桥区交通投资建设集团网站
  • 芯片商城网站建设软文的概念是什么
  • 快递系统查询网站怎么做企业手机端网站模板
  • 电影网站模板下载wordpress忘记了密码
  • 网站工信部本案最新开公司的基本流程及费用
  • 做衣服外贸用什么网站好优化官方网站设计
  • 网站维护费用包括哪些本周热点事件
  • 怎样编辑网站标题做外贸网站卖什么好
  • 郑州航海路网站建设哪些网站可以找到兼职做报表的
  • 网站建设方案范本互动网页设计
  • 河北建设广州分公司网站免费外网
  • 南京cms建站系统软件发布网站源码
  • 网站宣传创意视频企业网站被转做非法用途
  • 40万用户自助建站网站企业建设方案