当前位置: 首页 > news >正文

宜州网站建设泡泡h5网页制作

宜州网站建设,泡泡h5网页制作,个人博客网站注册,wordpress做的博客Pytorch从零开始实战——咖啡豆识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——咖啡豆识别环境准备数据集模型选择训练模型可视化模型预测其他问题总结 环境准备 本文基于Jupyter notebook,使用Python3.8,Pytor…

Pytorch从零开始实战——咖啡豆识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——咖啡豆识别
    • 环境准备
    • 数据集
    • 模型选择
    • 训练
    • 模型可视化
    • 模型预测
    • 其他问题
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是手写VGG,并且测试多GPU。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

创建设备对象,并且查看GPU数量

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count()

数据集

本次使用的数据集是咖啡豆图片,它分为四个类别,Dark、Green、Light、Medium,一共有1200张图片,不同的类别存放在不同的文件夹中,文件夹名是类别名。
使用pathlib查看类别

import pathlib
data_dir = './data/beans'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Dark', 'Green', 'Medium', 'Light']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/beans/", transform=train_transforms)
total_data.class_to_idx # {'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (960, 240)

模型选择

本次实验使用VGG16,模型如下
在这里插入图片描述

class Model(nn.Module):def __init__(self):super().__init__()self.block1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.fc = nn.Sequential(nn.Linear(7 * 7 * 512, 4096),nn.ReLU(),nn.Linear(4096, 4096),nn.ReLU(),nn.Linear(4096, len(classNames)))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = x.view(-1, 7 * 7 * 512)x = self.fc(x)return x

使用summary查看模型结构,并且将模型转成多GPU并行运算的模型

from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)
if torch.cuda.device_count() > 1:  # 检查电脑是否有多块GPUprint(f"Let's use {torch.cuda.device_count()} GPUs!")model = nn.DataParallel(model)  # 将模型对象转变为多GPU并行运算的模型summary(model, input_size=(3, 224, 224))

在这里插入图片描述

训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义损失函数、优化算法、学习率,本次使用的是Adam优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,准确率还是非常高的

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

在这里插入图片描述

模型可视化

使用matplotlib可视化训练、测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

模型预测

定义模型预测函数

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}') 

开始单张图片预测

predict_one_image(image_path='./data/beans/Dark/dark (1).png', model=model, transform=train_transforms, classes=classes) # 预测结果是:Dark

在这里插入图片描述
查看最优的模型的准确率和损失

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.9916666666666667, 0.0399394309388299)

其他问题

本次实验又使用了单GPU,进行训练

# 单GPU
from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)

结果如下
在这里插入图片描述

总结

本次实验主要手写了经典网络架构VGG16,并且使用两张GPU和一张GPU进行实验,但惊奇的发现,一张GPU运行时间是164秒,两张GPU运行时间是318秒,明明算力提高了,反而训练时间更加慢了,经过资料的查询,大概原因是数据量很小,GPU之间传递数据占用时间相对大于加速运算时间,所以训练时间反而变长了。

http://www.yayakq.cn/news/549638/

相关文章:

  • 局网站建设方案上海造价信息网
  • 舞蹈网站模版设计导航
  • 诸暨网站建设网站是否被k
  • 各大网站怎么把世界杯做头条宁波建网站费用
  • 网站海外推广方法重庆发布公众号app
  • 网站建设与网络编辑综合实训课程指导手册wordpress 文章保存在哪里
  • 安康做网站公司百度问答官网
  • 广州市网站搭建制作怎么建设投票网站
  • 珠海营销型网站建设公司个人网站备案要多久
  • 深圳市手机网站建设公司贵州网站推广公司
  • 呼市品牌网站建设那家好免费做网站收录的
  • 客户管理系统网站模板下载帝国cms电影网站模板
  • 网站logo上传seo广告优化
  • wordpress密码重置漏洞济南网站搜索优化
  • 做网站怎么把字弄图片上去免费注册发布信息网站
  • 最好的公文写作网站网站更换空间改版收录
  • 做电商有哪些网站厦门住建局
  • wordpress 主题安全建设天津网站优化排名
  • 大气医院网站源码制作网站注册登录模块的思维导图
  • 网站外包建设如何修改英文WordPress主题首页
  • 音乐网站建设报告广州越秀区风险等级
  • 十堰门户网站建设百度会收录双域名的网站么
  • 设计类网站策划书宇说建筑网站
  • 企业网站备案要钱嘛企业网站如何设置关键词
  • 济南网络科技有限公司有哪些seo优化网络推广
  • 高端网站建设与制作seo搜索引擎是什么意思
  • 做外贸主页网站用什么的空间好点深圳工业设计大展2021
  • 佛山三水网站建设手机网站转微信小程序
  • 找深圳做网站的公司中山百度seo排名优化
  • 天津手机网站建设南宁seo网站建设费用