网站投票活动怎么做公司注册地址规定
SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出)
目录
- SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出)
 - 分类效果
 - 基本描述
 - 程序设计
 - 参考资料
 
分类效果

 
 
 
 
 
 
基本描述
1.Matlab实现SO-CNN-LSTM-MATT蛇群算法优化卷积神经网络-长短期记忆神经网络融合多头注意力机制多特征分类预测,SO-CNN-LSTM-Multihead-Attention;
 多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
 2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
 3.优化参数为:学习率,隐含层节点,正则化参数;
 4.可视化展示分类准确率;
 5.运行环境matlab2023b及以上。
 注:程序和数据放在一个文件夹
 

程序设计
私信回复SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
 
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
