当前位置: 首页 > news >正文

中山市企业网站seo哪里好上海网站建设聚众网络

中山市企业网站seo哪里好,上海网站建设聚众网络,网站免费正能量软件,天津网页设计工作Predictive Control of Networked Multiagent Systems via Cloud Computing论文复现 文章目录 Predictive Control of Networked Multiagent Systems via Cloud Computing论文复现论文摘要系统参数初始化系统模型观测器预测过程控制器设计系统的整体框图仿真结果 论文摘要 翻译…

Predictive Control of Networked Multiagent Systems via Cloud Computing论文复现

文章目录

  • Predictive Control of Networked Multiagent Systems via Cloud Computing论文复现
    • 论文摘要
    • 系统参数初始化
    • 系统模型
    • 观测器
    • 预测过程
    • 控制器设计
    • 系统的整体框图
    • 仿真结果

论文摘要

翻译版本见:论文翻译:通过云计算对联网多智能体系统进行预测控制-CSDN博客

本文研究了基于云计算的网络化多智能体预测控制系统的设计与分析。该文提出一种网络化多智能体系统(NMAS)云预测控制方案,以同时实现一致性和稳定性,并主动补偿网络时延。详细介绍了NMAS云预测控制器的设计。对云预测控制方案的分析给出了闭环网络化多智能体控制系统稳定性和一致性的必要和充分条件。通过仿真验证了所提方案表征NMAS的动力学行为和控制性能。研究结果为NMAS及其应用的合作和协调控制的发展奠定了基础。

论文链接:Predictive Control of Networked Multiagent Systems via Cloud Computing | IEEE Journals & Magazine | IEEE Xplore

期刊:IEEE Transactions on Cybernetics

分区:Q1

论文引用:G. -P. Liu, “Predictive Control of Networked Multiagent Systems via Cloud Computing,” in IEEE Transactions on Cybernetics, vol. 47, no. 8, pp. 1852-1859, Aug. 2017, doi: 10.1109/TCYB.2017.2647820.

项目地址:

CSDN资源论文复现:PredictiveControlofNetworkedMultiagentSystemsviaClou资源-CSDN文库
githublongchentian/Predictive-Control-of-Networked-Multiagent-Systems-via-Cloud-Computing: Predictive Control of Networked Multiagent Systems via Cloud Computing 论文复现 (github.com)

系统参数初始化

clc;
clear all;
close all;
A1 = [1.7,-1.3;1.6, -1.8];
B1 = [1.0;2.0];
C1 = [1.0,0.3];
A2 = [1.8,-1.4;1.8,-1.9];
B2 = [1.7;3.4];
C2 = [0.7,0.2];
A3 = [1.4,-1.1;1.3,-1.5];
B3 = [0.8;1.6];
C3 = [1.1,0.4];
G1 = -0.16;
G2 = -0.18;
G3 = -0.14;
H1 = -0.12;
H2 = -0.10;
H3= -0.14;
F1 = [-0.4483;-1.1724];
F2 = [-0.6803;-1.6191];
F3 = [-0.3908;-0.9254];
M = [1,0,1;1,1,1;1,0,1 
];
X1 =[0.1;0.2];
X2 =[0.1;0.7];
X3 =[0.1;0.8];
samp_t = 0.2
a1 = int8(3);
a2 = int8(2);
a3 = int8(3);
s1 = int8(2);
s2 = int8(3);
s3 = int8(1);

系统模型

为了说明如何轻松地设计、分析和执行云预测控制方案,下面考虑了线性非同一多智能体。实际上,该方案可以扩展到更一般的 NMAS,例如具有不确定性和干扰的非线性 NMAS
x i ( t + 1 ) = A i x i ( t ) + B i u i ( t ) y i ( t ) = C i x i ( t ) \begin{align} x_{i} (t+1)=&A_{i} x_{i} (t)+B_{i} u_{i} (t) \notag \\ y_{i} (t)=&C_{i} x_{i} (t) \end{align} xi(t+1)=yi(t)=Aixi(t)+Biui(t)Cixi(t)
∀i ∈ N,其中 x i ∈ R n i x_i∈R^{n_i} xiRni y i ∈ l y_i∈l yil u i ∈ m i u_i∈m_i uimi 分别是第 i i i 个智能体的状态、输出和输入向量, A i ∈ R n i × n i A_i∈R^{n_i×n_i} AiRni×ni B i ∈ R n i × m i B_i ∈R^{n_i×m_i} BiRni×mi C i ∈ R l × n i C_i ∈R^{l×n_i} CiRl×ni 是第 i 个智能体的矩阵。

在这里插入图片描述

观测器

假设所有智能体都是可观察的,但它们的状态是不可测量的。然后,基于输出 y i ( t − s i ) y_i(t − s_i) yi(tsi) 和控制输入 u i ( t − s i ) u_i(t − s_i) ui(tsi),第 i 个智能体的状态观察器设计如下:
x ^ i ( t − s i + 1 ∣ t − s i ) = A i x ^ i ( t − s i ∣ t − s i − 1 ) + B i u i ( t − s i ) + F i ( y i ( t − s i ) − y ^ i ( t − s i ∣ t − s i − 1 ) ) y ^ i ( t − s i ∣ t − s i − 1 ) = C i x ^ i ( t − s i ∣ t − s i − 1 ) \begin{align} \hat {x}_{i} \left ({t-s_{i} +1 | t-s_{i} }\right )=&A_{i} \hat {x}_{i} \left ({t-s_{i} | t-s_{i} -1}\right )+B_{i} u_{i} \left ({t-s_{i} }\right )\notag \\&+ \,\, F_{i} \left ({y_{i} \left ({t-s_{i} }\right )-\hat {y}_{i} \left ({t-s_{i} | t-s_{i} -1}\right )}\right ) \notag \\ \hat {y}_{i} \left ({t-s_{i} | t-s_{i} -1}\right )=&C_{i} \hat {x}_{i} \left ({t-s_{i} | t-s_{i} -1}\right ) \end{align} x^i(tsi+1∣tsi)=y^i(tsitsi1)=Aix^i(tsitsi1)+Biui(tsi)+Fi(yi(tsi)y^i(tsitsi1))Cix^i(tsitsi1)
其中 x ^ i ( t − k ∣ t − j ) ∈ ℜ n i ( k < j ) \hat {x}_{i} (t-k|t-j)\in \Re ^{n_{i}} (k<j) x^i(tktj)ni(k<j)表示第 i 个智能体根据时间 t − j t − j tj 之前的可用信息对时间 t − k t − k tk 的状态预测, y ^ i ( . ∣ . ) ∈ ℜ l i \hat {y}_{i} (.|.)\in \Re ^{l_{i}} y^i(.∣.)li是输出预测, F i ∈ ℜ n i × l i F_{i} \in \Re ^{n_{i} \times l_{i}} Fini×li是观察者增益矩阵。

在这里插入图片描述

预测过程

要使用直到时间 t − s i t − s_i tsi 的可用信息来预测第 i 个智能体的状态,可以使用从 t − s i + 2 t − s_i + 2 tsi+2 t + a i t + a_i t+ai 开始的以下时间状态估计:
x ^ i ( t − s i + k ∣ t − s i ) = A i x ^ i ( t − s i + k − 1 ∣ t − s i ) + B i u i ( t − s i + k − 1 ) y ^ i ( t − s i + k ∣ t − s i ) = C i x ^ i ( t − s i + k ∣ t − s i ) \begin{align} \hat {x}_{i} \left ({t-s_{i} +k | t-s_{i} }\right )=&A_{i} \hat {x}_{i} \left ({t-s_{i} +k-1 | t-s_{i} }\right )\notag \\&+ \,\, B_{i} u_{i} \left ({t-s_{i} +k-1}\right ) \\ \hat {y}_{i} \left ({t-s_{i} +k | t-s_{i} }\right )=&C_{i} \hat {x}_{i} \left ({t-s_{i} +k | t-s_{i} }\right ) \end{align} x^i(tsi+ktsi)=y^i(tsi+ktsi)=Aix^i(tsi+k1∣tsi)+Biui(tsi+k1)Cix^i(tsi+ktsi)
传感器时延部分的预测+执行器部分的预测:

在这里插入图片描述
在这里插入图片描述

预测部分代码:

function [x_,y]= fcn(u10,u9,u8,u7,u6,u5,u4,u3,u2,u1,x,s,a,A,B,C)
% tau的上界是N,最多迭代N次,控制输入按照t-s_i时刻的值
tau = s + a;
temp0 = x;
if tau == 1temp1 = A * temp0 + B * u1;x_ = temp1;
elseif tau == 2temp1 = A * temp0 + B * u2;temp2 = A * temp1 + B * u1;x_ = temp2;
elseif tau == 3temp1 = A * temp0 + B * u3;temp2 = A * temp1 + B * u2;temp3 = A * temp2 + B * u1;x_ = temp3;
elseif tau == 4temp1 = A * temp0 + B * u4;temp2 = A * temp1 + B * u3;temp3 = A * temp2 + B * u2;temp4 = A * temp3 + B * u1;x_ = temp4;  
elseif tau == 5temp1 = A * temp0 + B * u5;temp2 = A * temp1 + B * u4;temp3 = A * temp2 + B * u3;temp4 = A * temp3 + B * u2;temp5 = A * temp4 + B * u1;x_ = temp5;
elseif tau == 6temp1 = A * temp0 + B * u6;temp2 = A * temp1 + B * u5;temp3 = A * temp2 + B * u4;temp4 = A * temp3 + B * u3;temp5 = A * temp4 + B * u2;temp6 = A * temp5 + B * u1;x_ = temp6;
elseif tau == 7temp1 = A * temp0 + B * u7;temp2 = A * temp1 + B * u6;temp3 = A * temp2 + B * u5;temp4 = A * temp3 + B * u4;temp5 = A * temp4 + B * u3;temp6 = A * temp5 + B * u2;temp7 = A * temp6 + B * u2;x_ = temp7;
elseif tau == 8temp1 = A * temp0 + B * u8;temp2 = A * temp1 + B * u7;temp3 = A * temp2 + B * u6;temp4 = A * temp3 + B * u5;temp5 = A * temp4 + B * u4;temp6 = A * temp5 + B * u3;temp7 = A * temp6 + B * u2;temp8 = A * temp7 + B * u1;x_ = temp8;
elseif tau == 9temp1 = A * temp0 + B * u9;temp2 = A * temp1 + B * u8;temp3 = A * temp2 + B * u7;temp4 = A * temp3 + B * u6;temp5 = A * temp4 + B * u5;temp6 = A * temp5 + B * u4;temp7 = A * temp6 + B * u3;temp8 = A * temp7 + B * u2;temp9 = A * temp8 + B * u1;x_ = temp9;
elseif tau == 10temp1 = A * temp0 + B * u10;temp2 = A * temp1 + B * u9;temp3 = A * temp2 + B * u8;temp4 = A * temp3 + B * u7;temp5 = A * temp4 + B * u6;temp6 = A * temp5 + B * u5;temp7 = A * temp6 + B * u4;temp8 = A * temp7 + B * u3;temp9 = A * temp8 + B * u2;temp10 = A * temp9 + B * u1;x_ = temp10;
else x_ = temp0;end
y = C * x_;

控制器设计

假设所需的参考输入由阶跃信号向量 r 0 r_0 r0 表示,并且仅应用于其中一个智能体,例如,具有 a 1 ≥ a i , ∀ i ∈ N − 1 a_1 ≥ a_i,∀i ∈ N − {1} a1aiiN1的第一个智能体。为了跟踪这个所需的参考输入,引入了一组动态变量
z 1 ( t + 1 + a 1 ) = z 1 ( t + a 1 ) + y ^ 1 ( t + a 1 ∣ t − s 1 ) − r 0 z i ( t + 1 + a i ) = z i ( t + a i ) + y ^ i ( t + a i ∣ t − s i ) − y ^ 1 ( t + a i ∣ t − s 1 ) . \begin{align} z_{1} \left ({t+1+a_{1}}\right )=&z_{1} \left ({t+a_{1}}\right )+\hat {y}_{1} \left ({t+a_{1} | t-s_{1} }\right )-r_{0}\qquad \\ z_{i} \left ({t+1+a_{i} }\right )=&z_{i} \left ({t+a_{i}}\right )+\hat {y}_{i} \left ({t +a_{i} | t-s_{i} }\right )\notag \\&- \,\, \hat {y}_{1} \left ({t +a_{i} | t- s_{1} }\right ). \end{align} z1(t+1+a1)=zi(t+1+ai)=z1(t+a1)+y^1(t+a1ts1)r0zi(t+ai)+y^i(t+aitsi)y^1(t+aits1).
(5)和(6)中动态变量的作用相当于常规控制系统中的积分作用,可以消除稳态跟踪误差。
在这里插入图片描述

为了主动补偿网络延迟 s i s_i si a i , ∀ i ∈ N a_i,∀i ∈ N aiiN,NMAS 的预测控制协议如下:
u ^ i ( t + a i ∣ t − s i ) = G i z i ( t + a i ) + H i ∑ j = 1 N c i j ( y ^ j ( t + a i ∣ t − s j ) − y ^ i ( t + a i ∣ t − s i ) ) \begin{align} \hat {u}_{i} \left ({t+a_{i} | t-s_{i} }\right )=&G_{i} z_{i} \left ({t+a_{i} }\right )\notag \\&+ \,\, H_{i} \sum _{j=1}^{N}c_{ij} \Biggl ({\hat {y}_{j} \left ({t+a_{i} | t-s_{j} }\right )}\notag \\&\qquad \qquad \qquad {- \,\, \hat {y}_{i} \left ({t+a_{i} | t-s_{i} }\right )}\Biggr )\qquad \end{align} u^i(t+aitsi)=Gizi(t+ai)+Hij=1Ncij(y^j(t+aitsj)y^i(t+aitsi))
其中
c i j = { 1 , i f a i ≤ a j 0 , i f a i > a j . \begin{equation} c_{ij} =\begin{cases} {1}, & {\mathrm{ if}}~a_{i} \, \le \, a_{j}\\ {0},& {\mathrm{ if}}~a_{i} \, >a_{j}. \end{cases} \end{equation} cij={1,0,if aiajif ai>aj.
G i ∈ R m i × m i G_i ∈R^{m_i×m_i} GiRmi×mi H i ∈ R m i × l i H_i ∈R^{m_i×l_i} HiRmi×li 是需要设计的增益矩阵。以上暗示预测控制协议利用基于时间 t − s i , ∀ i ∈ N t − s_i,∀i ∈ N tsi,iN 可用信息的输出预测来估计时间 t + a i , ∀ i ∈ N t + a_i,∀i ∈ N t+ai,iN 的未来控制行为。实际上,所提出的预测控制协议由两部分组成。一个是让智能体 1 跟踪所需的参考,让其他智能体跟踪智能体 1 的输出,这由 (7) 中右侧的第一项表示。另一个是智能体之间的协调,由(7)中右侧的第二项表示。

在这里插入图片描述
在这里插入图片描述

然后,第 i 个智能体的预测控制输入被设计为
u i ( t + a i ) = u ^ i ( t + a i ∣ t − s i ) . \begin{equation} u_{i} \left ({t+a_{i}}\right )=\hat {u}_{i} \left ({t+a_{i} | t-s_{i}}\right ). \end{equation} ui(t+ai)=u^i(t+aitsi).
因此,第 i 个智能体的控制输入为
u i ( t ) = u ^ i ( t ∣ t − s i − a i ) . \begin{equation} u_{i} (t)=\hat {u}_{i} \left ({t | t-s_{i} -a_{i}}\right ). \end{equation} ui(t)=u^i(ttsiai).

因此,云预测控制方案被提出如下。

  1. 来自传感器的所有智能体的输出数据 y i ( t ) , ∀ i ∈ N y_i(t),∀i ∈ N yi(t),iN, 在每个采样时间 t 被发送到网络。

  2. 基于从网络接收到的输出数据 y i ( t − s i ) , ∀ i ∈ N y_i(t − s_i),∀i ∈ N yi(tsi),iN,云计算系统计算预测 x ^ i ( t + a i ∣ t − s i ) , y ^ i ( t + a i ∣ t − s i ) , u ^ i ( t + a i ∣ t − s i ) , ∀ i ∈ N , \hat {x}_{i} (t+a_{i} |t-s_{i} ),~\hat {y}_{i} (t+a_{i} |t-s_{i} ),~\hat {u}_{i} (t+a_{i} |t-s_{i} ),~\forall i\in {\mathbb N}, x^i(t+aitsi), y^i(t+aitsi), u^i(t+aitsi), iN,, 分别使用(3),(4)和(7)的智能体的状态,输出和控制输入,和动态变量 z i ( t + a i ) z_{i}(t+a_{i}) zi(t+ai), ∀ i ∈ N ∀i ∈ N iN 使用 (5) 和 (6)。

  3. 由(9)给出的控制输入预测 u i ( t + a i ) , ∀ i ∈ N u_{i} (t+a_{i}),∀i ∈ N ui(t+ai),iN通过网络从云计算系统发送到每个智能体的执行器。

  4. 所有智能体的执行器在每个采样时间 t 从网络接收由 (10) 给出的控制输入 u i ( t ) , ∀ i ∈ N u_i(t), ∀i ∈ N ui(t),iN

系统的整体框图

在这里插入图片描述

仿真结果

基本符合原文结果。

在这里插入图片描述

原文结果:

在这里插入图片描述

http://www.yayakq.cn/news/407115/

相关文章:

  • 什么是网络营销成败的关键网站优化推广 site
  • 如何建设属于自己的网站宁波网站建设公司代理
  • 网站建设的计划书高端网红
  • 网站建设评分细则产权交易中心网站建设的原因
  • 网站图片设置4:3芯片公司网站建设
  • 企业网站建设招标wordpress 首页 分类
  • 广州云脑网站建设网上交易系统
  • 手机网站开发工具vi设计要求
  • 可以和朋友合资做网站吗下载别人网站的asp
  • 网站模块数据同步asp.net 3.5网站开发全程解析
  • 便宜的网站空间做一些好玩的个人网站
  • 信誉好的常州做网站Wordpress微博样式
  • 企业网站优化做什么东莞公司网络营销公司
  • 哈尔滨座做网站的c 可以做网站嘛
  • 网站如何排版百度推广登录入口电脑
  • 张家口城乡建设局网站计算机网站建设体会
  • 网站群管理平台深圳哪些公司需要做网站
  • 网站建设推广服务合同范本迅速编程做网站
  • 网站虚拟机可以自己做吗下载官方购物网站
  • 如果网站曾被挂木马中国114黄页网站宣传广告
  • 建设网站技术公司简介深圳创业补贴政策2021
  • 中国建行官方网站做网站muse好还是DW好用
  • 锡盟建设工程造价管理站网站如何自助建网站
  • 网站建站模板样例网站的区别
  • 山东天狐做网站cms军事新闻视频在线观看
  • 个人做财经类网站wordpress产品展示类
  • 珠海企业医疗网站建设q版网页游戏大全
  • 广安门内网站建设中国核工业二三建设有限公司招聘信息
  • 哪些网站做外链好软件开发入门
  • 公司网站怎么做网站备案wordpress 微博插件