当前位置: 首页 > news >正文

网加商学院网站怎么做0基础学设计该从何开始

网加商学院网站怎么做,0基础学设计该从何开始,wordpress图片自动打水印,广元商城网站开发打卡 目录 打卡 快速入门案例:minist图像数据识别任务 案例任务说明 流程 1 加载并处理数据集 2 模型网络构建与定义 3 模型约束定义 4 模型训练 5 模型保存 6 模型推理 相关参考文档入门理解 MindSpore数据处理引擎 模型网络参数初始化 模型优化器 …

打卡

目录

打卡

快速入门案例:minist图像数据识别任务

案例任务说明

流程

1 加载并处理数据集

2 模型网络构建与定义

3 模型约束定义

4 模型训练

5 模型保存

6 模型推理

相关参考文档入门理解

MindSpore数据处理引擎

模型网络参数初始化

模型优化器

损失函数

代码

安装

从模型训练到预测推理

self_main_train_and_save.py

self_dataprocess.py

self_network.py

self_modeltrain.py

self_modeltest.py

self_predict.py


快速入门案例:minist图像数据识别任务

案例任务说明

MINIST数据集是有标签的图像数据,图像数据是0-9的手写阿拉伯数字。其中,训练集有6W个,测试集1W个。

目的是训练一个可以高效识别手写阿拉伯数字的模型。

流程

1 加载并处理数据集

涉及到的mindspore接口 mindspore.dataset。例如对数据集的map、batch、shuffle等操作,数据列名获取,对数据集进行迭代访问、查看数据和标签的shape和datatype等。

2 模型网络构建与定义

涉及到 mindspore.nn 类。例如用户可继承nn.Cell类来自定义网络结构,其中的construct类函数包含数据(Tensor)的变换过程。。

3 模型约束定义

包括损失函数、优化器等。如 nn.CrossEntropyLoss() 、nn.SGD(model.trainable_params(), 1e-2)

4 模型训练

- 定义训练函数,用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

- 定义测试函数,用来评估模型的性能。

5 模型保存

- 两种保存方式:

1)模型参数保存:mindspore.save_checkpoint(model, "model.ckpt")

2)统一的中间表示(Intermediate Representation,IR)的保存,MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。mindspore.export(model, inputs, file_name="model", file_format="MINDIR")

6 模型推理

- 两种加载方式:

1)模型参数加载: 

> model = network()

> param_dict = mindspore.load_checkpoint("model.ckpt");  

param_not_load, _ = mindspore.load_param_into_net(model, param_dict)

2)统一的中间表示(Intermediate Representation,IR)的加载:

> mindspore.set_context(mode=mindspore.GRAPH_MODE)
> graph = mindspore.load("model.mindir")
> model = nn.GraphCell(graph)  ## nn.GraphCell 仅支持图模式。
> outputs = model(inputs)

保存与加载 — MindSpore master 文档

相关参考文档入门理解

MindSpore数据处理引擎

MindSpore 通过对外暴露API层来构建数据图;内部的Data Processing Pipeline 层用来进行数据加载和预处理多步并行流水线。
高性能数据处理引擎 — MindSpore master 文档

MindSpore 通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。

数据集 Dataset — MindSpore master 文档

数据变换 Transforms — MindSpore master 文档

模型网络参数初始化

Initializer是MindSpore内置的参数初始化基类,所有内置参数初始化方法均继承该类。mindspore.nn中提供的神经网络层封装均提供weight_initbias_init等入参,可以直接使用实例化的Initializer进行参数初始化。

参数初始化 — MindSpore master 文档

模型优化器

优化器 — MindSpore master 文档

损失函数

损失函数 — MindSpore master 文档

代码

安装

pip/conda均可:

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1

从模型训练到预测推理

训练:

python self_main_train_and_save.py

推理:

python self_predict.py

self_main_train_and_save.py

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset# 用download库从公开华为云obs桶下载 MINIST 数据集并解压。因为mindspore.dataset 提供的接口仅支持解压后的数据文件 
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)    ## 1 加载数据集
train_dataset = MnistDataset('MNIST_Data/train', shuffle=False)
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names())   # 打印数据集中包含的数据列名,用于dataset的预处理。输出['image', 'label']## 2 MindSpore的dataset使用数据处理流水线,这里将处理好的数据集打包为大小为64的batch。
from self_dataprocess import datapipe
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)  
test_dataset = datapipe(test_dataset, 64)  ## 3 数据集加载后,一般以迭代方式获取数据,然后送入神经网络中进行训练。可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
for image, label in test_dataset.create_tuple_iterator():print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")print(f"Shape of label: {label.shape} {label.dtype}")break“”“Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32Shape of label: (64,) Int32”“”
for data in test_dataset.create_dict_iterator():print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")break## 4 模型训练
from self_network import Network
from self_modeltrain import train, loss_fn 
from self_modelteset import test
model = Network()
epochs = 3
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(model, train_dataset)test(model, test_dataset, loss_fn)
print("Done!")## 5 保存模型
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

self_dataprocess.py

from mindspore.dataset import vision, transforms
def datapipe(dataset, batch_size):image_transforms = [vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]label_transform = transforms.TypeCast(mindspore.int32)dataset = dataset.map(image_transforms, 'image')dataset = dataset.map(label_transform, 'label')dataset = dataset.batch(batch_size)return dataset

self_network.py

# Define model
from mindspore import nnclass Network(nn.Cell): def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsdef check_network():model = Network()print(model)

self_modeltrain.py

# Instantiate loss function and optimizer
from mindspore import nnloss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)# 1. Define forward function
def forward_fn(data, label):logits = model(data)loss = loss_fn(logits, label)return loss, logits# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)# 3. Define function of one-step training
def train_step(data, label):(loss, _), grads = grad_fn(data, label)optimizer(grads)return lossdef train(model, dataset):size = dataset.get_dataset_size()model.set_train()     ## 设置当前Cell和所有子Cell的训练模式。对于训练和预测具有不同结构的网络层(如 BatchNorm),将通过这个属性区分分支。如果设置为True,则执行训练分支,否则执行另一个分支。默认Truefor batch, (data, label) in enumerate(dataset.create_tuple_iterator()):loss = train_step(data, label)if batch % 100 == 0:loss, current = loss.asnumpy(), batchprint(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

self_modeltest.py

from mindspore import nn def test(model, dataset, loss_fn):num_batches = dataset.get_dataset_size()model.set_train(False)total, test_loss, correct = 0, 0, 0for data, label in dataset.create_tuple_iterator():pred = model(data)total += len(data)test_loss += loss_fn(pred, label).asnumpy()correct += (pred.argmax(1) == label).asnumpy().sum()test_loss /= num_batchescorrect /= totalprint(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

self_predict.py

## 加载模型
from self_network import Network# Instantiate a random initialized model
model = Network()# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)  
print(param_not_load)   ## param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。## 加载后的模型可以直接用于预测推理。
model.set_train(False)
for data, label in test_dataset:pred = model(data)predicted = pred.argmax(1)print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')break

http://www.yayakq.cn/news/815092/

相关文章:

  • 宝洁网站建设渭南市工程建设项目审批平台
  • 南昌p2p网站建设公司网站建设与管理课程标准
  • 网站平台建设成本浙江邮电工程建设有限公司网站
  • 网站排行怎么做网站个人简介怎么做
  • 有哪些免费网站可以发布广告自助建站系统搭建
  • 南通企业网站制作wordpress娱乐网
  • 网站视频主持人怎样用源代码做网站
  • 国外案例网站app大全
  • 广东省中山市网站手机网站可以做商城吗
  • 网站编程多少钱建设银行中国建设银行
  • 医院图书馆网站建设的意义安徽省建设厅网站电话
  • 济南建设网站哪里好长沙网红店
  • 宝山网站建设哪家好在线html编辑器
  • 抄袭网站违法网站制作是不是要一个后台
  • 北京公司网站建设报价兰州吸引用户的网站设计
  • 南海网站制作公司宁波建站模板系统
  • 中国建设银行信用卡网站首页wordpress如何获取视频封面
  • 廊坊网站建设公司费用网页传奇新游开服
  • p图做网站兼职劳务工程信息平台
  • 现在还有人用asp做网站新一代设计协作工具
  • 福州专业做网站的公司做网站的流程
  • 个人可以建设农资网站吗建网站要花费多少钱
  • 扬州大学第四届网站建设评比微信app下载安装官方版2022网址
  • 杭州煜灿网络科技有限公司网站开发抚州招聘网站建设
  • 企业网站建设客户需求调查问卷用网站做CAN总线通信好吗
  • 福建省效能建设网站最好的网站开发工具
  • 天水 网站建设招聘h5个人网站源码
  • 潮州网站搭建找谁HTML发布网站
  • 柳州网站推广最好的公司专业建设方案
  • 西咸新区建设环保网站网站建设公司的成本有哪些内容