当前位置: 首页 > news >正文

网站服务器租用开票应该动易论坛官方网站

网站服务器租用开票应该,动易论坛官方网站,ui网页界面设计素材,代理网址浏览器半结构化分析主要是指对 MAP,STRUCT,JSON,ARRAY 等复杂数据类型的查询分析。这些数据类型表达能力强,因此被广泛应用到 OLAP 分析的各种场景中,但由于其实现的复杂性,对这些复杂类型分析将会比一般简单类型…

半结构化分析主要是指对 MAP,STRUCT,JSON,ARRAY 等复杂数据类型的查询分析。这些数据类型表达能力强,因此被广泛应用到 OLAP 分析的各种场景中,但由于其实现的复杂性,对这些复杂类型分析将会比一般简单类型要更困难和耗时,例如:

  • 需要对 MAP,STRUCT,JSON 等数据类型中的某个字段进行查询分析。由于这些复杂类型会被存储为一个整体,因此需要先将整个半结构化类型的字段先从存储层读取上来,然后再对其中的某些字段进行分析,IO效率较低。
  • 对复杂类型进行较为耗时的分析计算(聚合,排序等等),查询的实时CPU 开销可能也是一个不可忽略的性能影响因素。

面对上述的挑战,StarRocks在3.1 版本正式推出生成列(Generated Column)特性,提供一种透明加速的解决方案,能有效提升半结构化数据的分析效率,令用户拥有更极速的分析体验。

生成列介绍

生成列是一种特殊的列,可以在建表语句或 Schema Change 语句中指定,生成列绑定到一个标量表达式上,当数据导入时,会自动根据表达式定义进行计算,并且将其计算结果写入到生成列中。

alt

在半结构化分析的场景中,可以将复杂耗时的标量表达式绑定在某个生成列上,在数据导入阶段提前将结果计算好并且持久化到磁盘中。当需要进行查询分析时,即可马上获得表达式计算的结果。

生成列的查询改写

当希望查询生成列保存的表达式计算结果时,可以直接在 SQL 中指定生成列的列名,但是这种方法意味着需要调整已有业务 SQL,很难完全做到无缝对接。

为了进一步提升功能的使用体验,简化使用流程,StarRocks 支持生成列自动查询改写。在生成执行计划时,SQL 优化器将会检查 SQL 中所有的表达式,并且将那些已经绑定到生成列上的表达式,改写成查询生成列列值。

例如,上述例子中,如果在某个查询中需要获取 colc 中的 a 字段,则执行查询SELECT get_json_string(json_string(tbl.colc), '$.a') FROM tbl,执行过程大致如下:

alt

可见,优化器自动将表达式改写为查询生成列的值,实现透明加速。

高效的生成列加列

在实际应用生成列的使用场景中,在已有的表添加生成列可能是一个高频操作。例如,可能在任意时间点发现某个表达式计算存在性能瓶颈,因此希望添加生成列以进行查询加速。

StarRocks 支持高效的加列操作,对于添加普通列,存储引擎并不会真正重写物理文件,而只是将物理文件重新 link 到新 Tablet 的路径下,修改元数据,完成加列操作。但是,如 MODIFY COLUMN 这类 Schema Change 操作,由于需要改变存量数据的内容,因此会重写所有物理文件。类似地,对于生成列加列来说,由于需要存储新增的生成列表达式的计算结果,重写数据似乎也是不可避免的。但是,如果仍然采用全量重写物理文件的方案,将无法很好适应频繁加列的场景,加列的代价太大。

为了进一步提高生成列加列的效率,StarRocks 针对生成列加列进行了专门的优化。当添加一个生成列时,不会改写存量的物理文件,而是为每一个存量的 segment 生成一个只包含生成列值的 cols 文件(物理格式和 segment 文件一样,但只包含生成列一列数据),当需要查询这些存量数据时,StarRocks 会自动将 segment 和 cols 文件的内容进行合并,获得正确的查询结果。

总的来说,生成列加列优化后,读 I/O 只涉及到生成列表达式的引用列,写 I/O 只涉及到生成列本身的表达式结果,整个 Schema Change 的 I/O 效率相比完全重写有大幅提高,更好支持实时动态生成列加列的用户需求。

alt

效果验证

为了更好验证生成列对半结构化分析的加速效果,我们进行了简单的测试验证。

集群信息:StarRocks v3.1 1FE1BE ,104C376GB

创建一张如下的数据表,

CREATE TABLE `t` (
  `id` bigint(20) NOT NULL COMMENT "",
  `array_int` ARRAY<int(11)> NOT NULL COMMENT "",
  `json_data` json NOT NULL COMMENT "",
  `gc_1` double NULL AS array_avg(`test`.`t`.`array_int`) COMMENT "",
  `gc_2` ARRAY<int(11)> NULL AS array_sort(`test`.`t`.`array_int`) COMMENT "",
  `gc_3` varchar(65533) NULL AS get_json_string(json_string(`test`.`t`.`json_data`), '$.a') COMMENT ""
) ENGINE=OLAP 
PRIMARY KEY(`id`)
COMMENT "OLAP"
DISTRIBUTED BY HASH(`id`) BUCKETS 48 
PROPERTIES (
"replication_num" = "1",
"in_memory" = "false",
"storage_format" = "DEFAULT",
"enable_persistent_index" = "false",
"replicated_storage" = "true",
"compression" = "LZ4"
)

普通列数据创建方式: id,作为 primary key 列保证唯一。

array_int,长度为 10000 的 ARRAY ,保存的都是随机数。

json_data,包含两个 key,key "a" 对应的 value 为整型 1,key "b" 对应的value 是长度为 100 个 uuid 构成的字符串 性能测试使用下面的 query:

q1:SELECT get_json_string(json_string(json_data), '$.a') FROM A
q2:SELECT array_avg(array_int) FROM A;

测试结果:

alt

从上述的测试结果可知:

q1:使用生成列提取大 JSON 字段中的某个子字段,在查询阶段大幅节省了读取 JSON 字段的 I/O 消耗,查询性能提升达 4 倍以上。

q2:使用生成列对大 ARRAY 字段进行聚合计算(计算平均值),在查询阶段不仅节省读取该半结构化数据字段的 I/O 消耗,同时也大幅节省了 ARRAY 聚合计算所带来的 CPU 消耗,获得百倍的性能提升。

总结

生成列功能是一种加速半结构化分析的有效手段,当面对复杂的半结构化表达式计算时,可以为其添加对应的生成列,在导入阶段自动完成表达式计算,并将结果持久化。在查询阶段通过优化器的自动改写,直接从生成列中获得表达式计算结果,避免实时的表达式计算,实现透明加速。 通过使用生成列,用户能大幅减少查询时复杂表达式的 I/O,CPU 等资源消耗,在不同的场景下获得数倍甚至百倍的性能提升。

本文由 mdnice 多平台发布

http://www.yayakq.cn/news/7215/

相关文章:

  • 微网站与手机网站的区别网站建设菜鸟教程
  • 关于建设校园网站申请查询网站哪做的
  • 手表网站排名186信息网青岛网站开发培训
  • 手机设计网站做网站哪一家比较好
  • 唐山市住房房和城乡建设厅网站品牌建设包括哪些
  • 在哪些网站上申请做广告可以在百度引擎能收到关键字心理咨询网站建设
  • 网站标题权重吗如何做公司自己的网站
  • 葫芦岛公司做网站自由建网站的网络程序
  • 宁波制作网站的公司wordpress 上传
  • 株洲市网站建设办网站需流程
  • 网站在百度上搜不到市场监督管理局不处理问题怎么办
  • pc网站和手机网站查建设工程规划许可证网站
  • 深圳网站建设公司968网站运营与管理的内容有哪些
  • 成都全网营销型网站成都最值得一去的地方
  • h5手机网站开发demodedecms做网站教程
  • 陕西网站建设公司排名上海网站建设公司联系方式
  • 客户关系管理怎么快速优化网站
  • 企业网站源码 企业网站管理系统公众号文章怎么写
  • wordpress 主题使用徐州网站的优化
  • ip做网站域名温州市网站制作哪家便宜
  • 网站页面八桂职教网技能大赛2023
  • 昆明做网站建设有哪些个人发布信息免费推广平台
  • 计算机网络技术网站建设方向站长工具查询域名信息
  • 教育平台网站开发新手建网站需要怎么做呢
  • 国外电商网站如何建立二手房网站建设
  • 台州专业做网站做摄影网站的目的是什么
  • 用KEGG网站做通路富集分析软件开发有哪些岗位
  • iis配置网站phpwordpress 前端个人中心 ajax 订单 支付宝
  • 廊坊网站建设推广保障性住房建设投资中心网站
  • 网站开发设计文员wordpress调用自定义文章类型文章