当前位置: 首页 > news >正文

公司网站建设款计什么科目深圳品牌折扣店

公司网站建设款计什么科目,深圳品牌折扣店,织梦做分类信息网站,松江老城做网站1 主要思想 1.1 数据 1.2 训练和使用模型 训练:建立模型(树) 测试:使用模型(树) Weka演示ID3(终端用户模式) 双击weka.jar选择Explorer载入weather.arff选择trees–>ID3构建树…

1 主要思想

1.1 数据

在这里插入图片描述

1.2 训练和使用模型

训练:建立模型(树)
测试:使用模型(树)
在这里插入图片描述
Weka演示ID3(终端用户模式)

  • 双击weka.jar
  • 选择Explorer
  • 载入weather.arff
  • 选择trees–>ID3
  • 构建树,观察结果

建立决策树流程

  • Step 1. 选择一个属性
  • Step 2. 将数据集分成若干子集
  • Step 3.1 对于决策属性值唯一的子集, 构建叶结点
  • Step 3.2 对于决策属性值不唯一的子集, 递归调用本函数

演示: 利用txt文件, 按照决策树的属性划分数据集

2 信息熵

问题: 使用哪个属性进行数据的划分?
随机变量YYY的信息熵为 (YYY为决策变量):
H(Y)=E[I(yi)]=∑i=1np(yi)log⁡1p(yi)=−∑i=1np(yi)log⁡p(yi),H(Y) = E[I(y_i)] = \sum_{i=1}^n p(y_i)\log \frac{1}{p(y_i)} = - \sum_{i=1}^n p(y_i)\log p(y_i), H(Y)=E[I(yi)]=i=1np(yi)logp(yi)1=i=1np(yi)logp(yi),
其中 0log⁡0=00 \log 0 = 00log0=0.
随机变量YYY关于XXX的条件信息熵为(XXX为条件变量):
H(Y∣X)=∑i=1mp(xi)H(Y∣X=xi)=−∑i,jp(xi,yj)log⁡p(yj∣xi).\begin{array}{ll} H(Y | X) & = \sum_{i=1}^m p(x_i) H(Y | X = x_i)\\ & = - \sum_{i, j} p(x_i, y_j) \log p(y_j | x_i). \end{array} H(YX)=i=1mp(xi)H(YX=xi)=i,jp(xi,yj)logp(yjxi).
XXXYYY带来的信息增益: H(Y)−H(Y∣X)H(Y) - H(Y | X)H(Y)H(YX).

3 程序分析

版本1. 使用sklearn (调包侠)
这里使用了数据集是数值型。

import numpy as np
import scipy as sp
import time, sklearn, math
from sklearn.model_selection import train_test_split
import sklearn.datasets, sklearn.neighbors, sklearn.tree, sklearn.metricsdef sklearnDecisionTreeTest():#Step 1. Load the datasettempDataset = sklearn.datasets.load_breast_cancer()x = tempDataset.datay = tempDataset.target# Split for training and testingx_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)#Step 2. Build classifiertempClassifier = sklearn.tree.DecisionTreeClassifier(criterion='entropy')tempClassifier.fit(x_train, y_train)#Step 3. Test#precision, recall, thresholds = sklearn.metrics.precision_recall_curve(y_test, tempClassifier.predict(x_test))tempAccuracy = sklearn.metrics.accuracy_score(y_test, tempClassifier.predict(x_test))tempRecall = sklearn.metrics.recall_score(y_test, tempClassifier.predict(x_test))#Step 4. Outputprint("precision = {}, recall = {}".format(tempAccuracy, tempRecall))sklearnDecisionTreeTest()

版本2. 自己重写重要函数

  1. 信息熵
#计算给定数据集的香农熵
def calcShannonEnt(paraDataSet):numInstances = len(paraDataSet)labelCounts = {}	#定义空字典for featVec in paraDataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0for key in labelCounts:prob = float(labelCounts[key])/numInstancesshannonEnt -= prob * math.log(prob, 2) #以2为底return shannonEnt
  1. 划分数据集
#dataSet 是数据集,axis是第几个特征,value是该特征的取值。
def splitDataSet(dataSet, axis, value):resultDataSet = []for featVec in dataSet:if featVec[axis] == value:#当前属性不需要reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])resultDataSet.append(reducedFeatVec)return resultDataSet
  1. 选择最好的特征划分
#该函数是将数据集中第axis个特征的值为value的数据提取出来。
#选择最好的特征划分
def chooseBestFeatureToSplit(dataSet):#决策属性不算numFeatures = len(dataSet[0]) - 1baseEntropy = calcShannonEnt(dataSet)bestInfoGain = 0.0bestFeature = -1for i in range(numFeatures):#把第i列属性的值取出来生成一维数组featList = [example[i] for example in dataSet]#剔除重复值uniqueVals = set(featList)newEntropy = 0.0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob*calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif(infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature
  1. 构建叶节点
#如果剩下的数据中无特征,则直接按最大百分比形成叶节点
def majorityCnt(classList):classCount = {}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount += 1;sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgette(1), reverse = True)return sortedClassCount[0][0]
  1. 创建决策树
#创建决策树
def createTree(dataSet, paraFeatureName):featureName = paraFeatureName.copy()classList = [example[-1] for example in dataSet]#Already pureif classList.count(classList[0]) == len(classList):return classList[0]#No more attributeif len(dataSet[0]) == 1:#if len(dataSet) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)#print(dataSet)#print("bestFeat:", bestFeat)bestFeatureName = featureName[bestFeat]myTree = {bestFeatureName:{}}del(featureName[bestFeat])featvalue = [example[bestFeat] for example in dataSet]uniqueVals = set(featvalue)for value in uniqueVals:subfeatureName = featureName[:]myTree[bestFeatureName][value] = createTree(splitDataSet(dataSet, bestFeat, value), subfeatureName)return myTree
  1. 分类和返回预测结果
#Classify and return the precision
def id3Classify(paraTree, paraTestingSet, featureNames, classValues):tempCorrect = 0.0tempTotal = len(paraTestingSet)tempPrediction = classValues[0]for featureVector in paraTestingSet:print("Instance: ", featureVector)tempTree = paraTreewhile True:for feature in featureNames:try:tempTree[feature]splitFeature = featurebreakexcept:i = 1 #Do nothingattributeValue = featureVector[featureNames.index(splitFeature)]print(splitFeature, " = ", attributeValue)tempPrediction = tempTree[splitFeature][attributeValue]if tempPrediction in classValues:breakelse:tempTree = tempPredictionprint("Prediction = ", tempPrediction)if featureVector[-1] == tempPrediction:tempCorrect += 1return tempCorrect/tempTotal
  1. 构建测试代码
def mfID3Test():#Step 1. Load the datasetweatherData = [['Sunny','Hot','High','FALSE','N'],['Sunny','Hot','High','TRUE','N'],['Overcast','Hot','High','FALSE','P'],['Rain','Mild','High','FALSE','P'],['Rain','Cool','Normal','FALSE','P'],['Rain','Cool','Normal','TRUE','N'],['Overcast','Cool','Normal','TRUE','P'],['Sunny','Mild','High','FALSE','N'],['Sunny','Cool','Normal','FALSE','P'],['Rain','Mild','Normal','FALSE','P'],['Sunny','Mild','Normal','TRUE','P'],['Overcast','Mild','High','TRUE','P'],['Overcast','Hot','Normal','FALSE','P'],['Rain','Mild','High','TRUE','N']]featureName = ['Outlook', 'Temperature', 'Humidity', 'Windy']classValues = ['P', 'N']tempTree = createTree(weatherData, featureName)print(tempTree)#print(createTree(mydata, featureName))#featureName = ['Outlook', 'Temperature', 'Humidity', 'Windy']print("Before classification, feature names = ", featureName)tempAccuracy = id3Classify(tempTree, weatherData, featureName, classValues)print("The accuracy of ID3 classifier is {}".format(tempAccuracy))def main():sklearnDecisionTreeTest()mfID3Test()main()

4 讨论

符合人类思维的模型;
信息增益只是一种启发式信息;
与各个属性值“平行”的划分。

其它决策树:

  • C4.5:处理数值型数据
  • CART:使用gini指数
http://www.yayakq.cn/news/800173/

相关文章:

  • 网站当前位置 样式网站效果图设计
  • 网站流量下降的原因做正常站网站都被墙了
  • 长沙网站整站优化研究生院 网站 建设
  • 宁波网站建设设计公司信息湛江个人网站建设
  • 一个公司做两个网站的多吗做户外的网站
  • wordpress伪静态cdnseo属于什么职业部门
  • 山西运城网站建设南宁网站制作开发公司
  • 专业建设专业网站制作公司企业数字展厅设成都企业展厅设计公司
  • 中国建设会计协会网站首页宁夏网站建设优化
  • 网站价格明细表网站建设 技术方案
  • 嘉兴搜索引擎网站推广衡水网站建设哪家专业
  • 成都网站建设开发公网站在线帮助如何设计
  • `北京网站建设衡水网站建设一多软件
  • 房地产企业网站建设搜索排名seo
  • php源码怎么建设网站网站300m是什么意思
  • 四位一体网站开发深圳网站建设价格
  • 网站怎样添加百度地图哪些社交网站做外贸比较好
  • 做网站留后门是怎么回事汕头怎么进行关键词优化
  • 网站页面图片网站开发是分为前端和后端吗
  • 做网站有回扣拿吗微信小程序发布流程
  • 初中做网站软件营销型网店与品牌型网店的区别
  • 注册的网站Zillah wordpress
  • 做直播网站找哪个个人免费域名空间建站
  • 网站开发企业部门app开发工具
  • 行业网站源码开发帮app下载
  • 帮企网站建设代运营做网站难吗
  • 网站建设内容与实现功能公司官网域名怎么注册
  • 英文外贸网站设计unity3d做网站
  • 婚嫁类网站时间轴网站设计
  • 怎么安装网站代码做网站的困难