当前位置: 首页 > news >正文

枣庄定制网站建设制作房天下怎样快速做网站

枣庄定制网站建设制作,房天下怎样快速做网站,深圳建设工程交易集团官网,wordpress jsdelivr在阅读本文前,建议先食用以下几篇文章以能更好地理解狄利克雷分布: 二项分布 Beta分布 多项分布 共轭分布 狄利克雷分布 狄利克雷分布(Dirichlet distribution)是Beta分布的扩展,把Beta分布从二元扩展到多元形式就是狄利克雷分布&#…

在阅读本文前,建议先食用以下几篇文章以能更好地理解狄利克雷分布:

二项分布

Beta分布

多项分布

共轭分布

狄利克雷分布

狄利克雷分布(Dirichlet distribution)是Beta分布的扩展,把Beta分布从二元扩展到多元形式就是狄利克雷分布,Beta分布是狄利克雷分布的二元特例。

在共轭方面,可以类比Beta分布与二项分布的关系,狄利克雷分布是多项分布的共轭分布,因此狄利克雷分布常作为多项分布的先验分布使用,它是多项分布似然的共轭先验。

狄利克雷分布本质上是多元连续型随机变量的概率密度分布,假设多元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 服从参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 的狄利克雷分布,记作 θ ∽ D i r ( α ) θ \backsim Dir(\alpha) θDir(α) ,则概率密度函数可表示为:

p ( θ ∣ α ) = Γ ( ∑ i = 1 k α i ) ∏ i = 1 k Γ ( α i ) ∏ i = 1 k θ i α i − 1 = 1 B ( α ) ∏ i = 1 k θ i α i − 1 ( 1 ) p(θ|\alpha)={\Gamma(\sum_{i=1}^k{\alpha _i})\over{\prod_{i_=1}^k\Gamma(\alpha _i)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}}={1\over{B(\alpha)}}\prod_{i=1}^k θ_i^{\alpha_{i-1}} \ \ \ \ \ (1) p(θα)=i=1kΓ(αi)Γ(i=1kαi)i=1kθiαi1=B(α)1i=1kθiαi1     (1)

其中, ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 α i > 0 \alpha_i > 0 αi>0

初识者对式 ( 1 ) (1) (1) 可能不明就里,我们来对它做个通俗的解释。

在二项分布和Beta分布中我们曾以抛硬币举例,因为他们只涉及到二元变量,硬币的正反面就可以表示。

在多项分布里面用的是骰子举例,狄利克雷分布也同样可以效仿之。

假设有个生产骰子的工厂,这个工厂技术精湛且先进,不仅能造出一般的质地均匀的六面骰子,甚至可以造出任意质地任意多个面的骰子,这里质地均匀指的是骰子掷出每个面的概率相同,任意质地指掷出每个面的概率不同(但和为1)。在此背景下,狄利克雷分布中的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 可以看作掷一枚这个工厂生产的具有 k k k 个面的骰子时, 每个面出现的概率;参数 α = ( α 1 , α 2 , . . . , α k ) \alpha=(\alpha _1,\alpha _2,...,\alpha _k) α=(α1,α2,...,αk) 可以看作掷 n n n 次骰子中, k k k 个面中每个面出现的次数,并且满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 ∑ i = 1 k α i = n \sum_{i=1}^k\alpha_i=n i=1kαi=n

因为 θ θ θ 满足 ∑ i = 1 k θ i = 1 \sum_{i=1}^kθ_i=1 i=1kθi=1 θ i ≥ 0 θ_i \geq 0 θi0 ,可以说狄利克雷分布的 k k k 元随机变量 θ = ( θ 1 , θ 2 , . . . , θ k ) θ=(θ_1,θ_2,...,θ_k) θ=(θ1,θ2,...,θk) 是定义在 k − 1 k-1 k1 维概率单纯形(K-dimentional probability simplex)上的 。 k k k 维单纯形就是具有 k + 1 k+1 k+1 个顶点的凸多面体,比如二维单纯形是个三角形、有三个顶点;三维单纯形是四面体、有四个顶点。 k k k 表示类别的数量,概率单纯形上的一个点可以用 k k k 个和为1的非负数表示。比如当 k = 3 k=3 k=3 时, θ 1 、 θ 2 、 θ 3 θ_1、θ_2、θ_3 θ1θ2θ3 分布在三维空间 z = 1 − x − y z=1-x-y z=1xy 的平面三角形上,是个二维单纯形。


在这里插入图片描述


http://www.yayakq.cn/news/643244/

相关文章:

  • 网站正在建设中...为什么护卫神免费制作app生成器网站
  • 承德北京网站建设seo点击优化
  • 网站备案信息被工信部删除济宁建网站公司
  • 查看网站注册信息黑龙江网站建设工作室
  • 热可可怎么做视频网站有想做企业网站建设
  • 广东建设网站商贸营销型网站案例
  • 域名做非法网站wordpress唱片公司模板
  • 山东安康建设项目管理有限公司网站西双版纳 网站建设
  • 建设网站预期效果怎么写网站自主制作平台
  • 广东工厂网站建设传奇网站免费空间
  • 关键词搜索引擎网站做网站站怎么赚钱
  • 网页设计与网站制作视频教程用thinksns做的网站
  • 自做闪图网站wordpress设置撰写
  • 网站备案是否收费小米网站的建设目的
  • 肇庆市建设局网站网站开发语言检测
  • 昆明企业公司网站建设wordpress银行模板
  • 兰州网站建设q.479185700強产品网站建设公司
  • 关于网站建设申请小说网站建设方案书ppt
  • 西安seo网站关键词网站服务是指
  • 高端网站建设的流程是什么查不到备案的网站
  • 漯河网站建设xkntipad怎么制作网站
  • 长春公司做网站成都的设计院
  • 备案需要网站空间单页营销网站怎么做
  • 特价网站建设公司中文网页模板免费
  • 做网站的注意点wordpress中文版 docker
  • 网站备案信息抽查建设银行网站预约取款
  • 新开传奇网站发布站建立一个自己的网站需要多少钱
  • php做网站难么wordpress 商城id连续
  • seo排名怎么做佛山百度网站排名优化
  • 做网站上传图片甜品网站设计与实现毕业设计