当前位置: 首页 > news >正文

有什么网站可以做深圳初二的试卷练习电子商务网站网站建设

有什么网站可以做深圳初二的试卷练习,电子商务网站网站建设,小米网站开发流程书,平台公司运作模式一、缺失值处理 1、如何处理nan 两种思路: (1)如果样本量很大,可以删除含有缺失值的样本 (2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数) 2、判断数据是否…

一、缺失值处理

1、如何处理nan
两种思路:
(1)如果样本量很大,可以删除含有缺失值的样本
(2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数)

2、判断数据是否为nan
(1)pd.isnull(df)
返回一堆布尔值,False不是缺失值,True是缺失值

(2)pd.notnull(df)
返回一堆布尔值,True不是缺失值,False是缺失值

3、缺失值处理方式
存在缺失值nan,并且是np.nan
(1)dropna(axis='rows', inplace=False)
删除存在缺失值
默认不替换原数据,返回新数据,inplace=True修改原数据

(2)fillna(value, inplace=True)
替换缺失值
说明:
value:替换成的值
inplace:
    True:会修改原数据
    False:不替换修改原数据,生成新的对象

(3)缺失值不是nan,是其他标记的
后面再说

二、缺失值处理实例

1、电影数据文件获取

import pandas as pdmovie = pd.read_csv("./IMDB-Movie-Data.csv")movieimport numpy as np# 判断是否存在缺失值
np.any(pd.isnull(movie))np.all(pd.notnull(movie))# 用dataframe的any方法
pd.isnull(movie).any() # 返回每一个字段是否有缺失值# 用dataframe的all方法
pd.notnull(movie).all()# 用dataframe的isnull方法
movie.isnull().sum()

2、删除含有缺失值的样本

# 缺失值处理
# 删除含有缺失值的样本
data1 = movie.dropna()data1.isnull().sum()

3、替换缺失值

# 含有缺失值的字段
# Revenue (Millions)
# Metascoremovie["Revenue (Millions)"].fillna(movie["Revenue (Millions)"].mean(), inplace=True)
movie["Metascore"].fillna(movie["Metascore"].mean(), inplace=True)movie.isnull().sum()

4、不是缺失值nan,是其他标记的
比如是?

思路:
(1)进行替换,将?替换成np.nan
(2)处理np.nan缺失值的步骤来
(3)replace(to_replace=, value=)
说明:
to_replace:替换前的值
value:替换后的值

# 不是缺失值nan,是其他标记的
name = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin','Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv("./breast-cancer-wisconsin.data", names=name)datadata_new = data.replace(to_replace="?", value=np.nan)data_newdata_new.dropna(inplace=True)data_new.isnull().sum()

三、数据离散化

1、什么是数据离散化
我们用数值表示类别,计算机它只知道数值,会认为数值大的有什么优势

连续属性的离散化就是将连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数、值代表落在每个子区间中的属性值,避免了由于数值差异导致类别的平衡

例子1:
  男  女  年龄
A  1   0   23
B  0   1   30
C  1   0   18

例子2:
原始的升高数据:165、174、160、180、159、163、192、184、
假设按照身高分几个区间段:(150,165],(166,180],(180,195]
这样我们将数据分到了三个区间段,我们可以对应的标记为矮、中、高三个类别,最终要处理成一个“哑变量”矩阵

我们把这种数据编码称为one-hot编码,也叫哑变量

2、为什么要数据离散化
连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数,离散化方法经常作为数据挖掘的工具

3、如何实现数据离散化
流程:
(1)对数据进行分组
(2)对分好组的数据求哑变量

4、对数据分组方法
pd.qcut(data, bins)
自动分组
说明:
data:要分组的数据
bins:要分的组数
返回值:分好组的Series

pd.cut(data, bins)
自定义分组
说明:
data:要分组的数据
bins:自定义的区间,以列表的形式[]传进来
返回值:分好组的Series

series.value_counts()
统计分组次数
对数据进行分组一般会与value_counts搭配使用,统计每组的个数

5、对分好组的数据求哑变量(one-hot编码)
pd.get_dummies(data, prefix=None)
说明:
data:array-like、Series、DataFrame
prefix:分组名字

6、小案例

# 数据的离散化
# 准备数据
data = pd.Series([165,174,160,180,159,163,192,184], index=['No1:165', 'No2:174','No3:160', 'No4:180', 'No5:159', 'No6:163', 'No7:192', 'No8:184'])data# 自动分组
sr = pd.qcut(data, 3)sr# 转换成one-hot编码
pd.get_dummies(sr, prefix="height")# 统计每个区间有多少样本
sr.value_counts()# 自定义分组
bins = [150, 165, 180, 195]
cut = pd.cut(data, bins)cutpd.get_dummies(cut, prefix="身高")cut.value_counts()

7、one-hot编码占内存,然后再用稀疏矩阵来减少内存。达到提取特征的目的

8、案例:股票的涨跌幅离散化

# 股票涨跌幅离散化
# 1、读取股票的数据
stock = pd.read_csv("./stock_day.csv")p_change = stock["p_change"]p_change# 自动分组
sr = pd.qcut(p_change, 10)sr.value_counts()# 离散化
pd.get_dummies(sr, prefix="涨跌幅")# 自定义分组
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
sr = pd.cut(p_change, bins)sr.value_counts()# 离散化
stock_change = pd.get_dummies(sr, prefix="rise")
stock_change

http://www.yayakq.cn/news/364594/

相关文章:

  • 做设计用图片的网站海外代理服务器 免费
  • 机房建设网站php网站框架
  • 图书类网站建设策划书wordpress 手机端APP
  • 两学一做纪实评价系统登陆网站甘肃省建设厅质量投诉网站
  • 运城公司做网站登录我的博客
  • 大气企业响应式网站wordpress采集破解版
  • 易语言怎么做无限打开网站大连seo外包
  • 东莞市建设局网站做爰全国网站
  • 网站建设要学习什么网赢天下深圳网站建设
  • 向google提交网站深圳网站开发培训
  • 网站开发模板图片中国纪检监察报投稿邮箱
  • 网上哪些网站可以做设计项目wordpress对应的id
  • 网站做哪些主题比较容易做石家庄网站服务
  • wordpress用户站点本地网站搭建如何访问网页
  • 建筑网站大全豆丁网建设网站主机免费版
  • 网站用户体验准则用asp.net做的网站实例
  • 怎样注册自己的网站有口碑的武进网站建设
  • 做擦边网站京东商家入驻入口官网
  • 做100个网站网络服务电话
  • 淘宝买cdk自己做网站淘宝官网首页电脑版登录
  • 一个公司可以做几个网站吗马可波罗网介绍
  • 运营 网站织梦网站后台空白
  • 以下哪一项不属于seo对网站推广的作用网站如何做容易收录
  • 东莞公司想建网站详情页设计素材
  • 企业英文网站大连网站建设那家好
  • 关于手机电子商务网站建设网站建设定制设计
  • 做动态图网站有哪些网站设计师要学什么
  • 莆田网站建设多少钱关于公司网站开发的事项
  • ftp上传网站建行输了三次密码卡锁怎么解
  • 建设网站电话asp公司网站源码