当前位置: 首页 > news >正文

白云网站建设哪家好网站建设七大步骤

白云网站建设哪家好,网站建设七大步骤,app界面设计风格有哪些,开拓网站建设公司(a)Mask RCNN总体流程 一.Mask RCNN 架构 自己整理了一份Mask RCNN架构图如下,其中绿色模块只有推理过程才会涉及。 核心模块包括:数据预处理,骨干网络,区域提议网络,FastRCNN分支&#xff0c…

(a)Mask RCNN总体流程

一.Mask RCNN 架构

自己整理了一份Mask RCNN架构图如下,其中绿色模块只有推理过程才会涉及。

Mask RCNN网络架构

核心模块包括:数据预处理,骨干网络,区域提议网络,FastRCNN分支,Mask分支,数据后处理等。

二.网络核心流程

class FasterRCNNBase(nn.Module):def __init__(self, backbone, rpn, roi_heads, transform):super(FasterRCNNBase, self).__init__()self.transform = transformself.backbone = backboneself.rpn = rpnself.roi_heads = roi_heads# used only on torchscript modeself._has_warned = False@torch.jit.unuseddef eager_outputs(self, losses, detections):# type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]]if self.training:return lossesreturn detectionsdef forward(self, images, targets=None):# type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]if self.training and targets is None:raise ValueError("In training mode, targets should be passed")if self.training:assert targets is not Nonefor target in targets:         # 进一步判断传入的target的boxes参数是否符合规定boxes = target["boxes"]if isinstance(boxes, torch.Tensor):if len(boxes.shape) != 2 or boxes.shape[-1] != 4:raise ValueError("Expected target boxes to be a tensor""of shape [N, 4], got {:}.".format(boxes.shape))else:raise ValueError("Expected target boxes to be of type ""Tensor, got {:}.".format(type(boxes)))original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])for img in images:val = img.shape[-2:]assert len(val) == 2  # 防止输入的是个一维向量original_image_sizes.append((val[0], val[1]))# original_image_sizes = [img.shape[-2:] for img in images]images, targets = self.transform(images, targets)  # 对图像进行预处理# print(images.tensors.shape)features = self.backbone(images.tensors)  # 将图像输入backbone得到特征图if isinstance(features, torch.Tensor):  # 若只在一层特征层上预测,将feature放入有序字典中,并编号为‘0’features = OrderedDict([('0', features)])  # 若在多层特征层上预测,传入的就是一个有序字典# 将特征层以及标注target信息传入rpn中# proposals: List[Tensor], Tensor_shape: [num_proposals, 4],# 每个proposals是绝对坐标,且为(x1, y1, x2, y2)格式proposals, proposal_losses = self.rpn(images, features, targets)# 将rpn生成的数据以及标注target信息传入fast rcnn后半部分detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)# 对网络的预测结果进行后处理(主要将bboxes还原到原图像尺度上)detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)losses = {}losses.update(detector_losses)losses.update(proposal_losses)if torch.jit.is_scripting():if not self._has_warned:warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")self._has_warned = Truereturn losses, detectionselse:return self.eager_outputs(losses, detections)# if self.training:#     return losses## return detections

FasterRCNNBase是RCNN检测算法的基类,FasterRCNN类要继承FasterRCNNBase类,而MaskRCNN类又要继承FasterRCNN类,所以当实例化一个model并传入数据x时,会调用FasterRCNNBase的forward函数:

model = MaskRCNN(backbone,num_classes)
model(images,targets)

FasterRCNNBase的 init() 函数:

    def __init__(self, backbone, rpn, roi_heads, transform):super(FasterRCNNBase, self).__init__()self.transform = transformself.backbone = backboneself.rpn = rpnself.roi_heads = roi_heads# used only on torchscript modeself._has_warned = False

传入参数包括:
(1)backbone:
resnet50
resnet101
resnet50+fpn
resnet101+fpn
(2)rpn:
区域提议网络
(3)roi_haeds:
box roi pooling/align
two MLP head
box predictor
mask roi pool
mask head
mask predictor
(4)transforms:
GeneraRCNNtransforms类的实例,用于数据预处理

FasterRCNNBase的 forward() 函数:

    def forward(self, images, targets=None):# type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]if self.training and targets is None:raise ValueError("In training mode, targets should be passed")if self.training:assert targets is not Nonefor target in targets:         # 进一步判断传入的target的boxes参数是否符合规定boxes = target["boxes"]if isinstance(boxes, torch.Tensor):if len(boxes.shape) != 2 or boxes.shape[-1] != 4:raise ValueError("Expected target boxes to be a tensor""of shape [N, 4], got {:}.".format(boxes.shape))else:raise ValueError("Expected target boxes to be of type ""Tensor, got {:}.".format(type(boxes)))original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])for img in images:val = img.shape[-2:]assert len(val) == 2  # 防止输入的是个一维向量original_image_sizes.append((val[0], val[1]))# original_image_sizes = [img.shape[-2:] for img in images]images, targets = self.transform(images, targets)  # 对图像进行预处理# print(images.tensors.shape)features = self.backbone(images.tensors)  # 将图像输入backbone得到特征图if isinstance(features, torch.Tensor):  # 若只在一层特征层上预测,将feature放入有序字典中,并编号为‘0’features = OrderedDict([('0', features)])  # 若在多层特征层上预测,传入的就是一个有序字典# 将特征层以及标注target信息传入rpn中# proposals: List[Tensor], Tensor_shape: [num_proposals, 4],# 每个proposals是绝对坐标,且为(x1, y1, x2, y2)格式proposals, proposal_losses = self.rpn(images, features, targets)# 将rpn生成的数据以及标注target信息传入fast rcnn后半部分detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)# 对网络的预测结果进行后处理(主要将bboxes还原到原图像尺度上)detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)losses = {}losses.update(detector_losses)losses.update(proposal_losses)if torch.jit.is_scripting():if not self._has_warned:warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")self._has_warned = Truereturn losses, detectionselse:return self.eager_outputs(losses, detections)

首先增加一些容错机制,保住输入数据格式符合模型要求,然后将images和targets输入transforms中进行数据格式的预处理;然后将images输入到backbone中,得到特征图features;将features,images,targets输入rpn网络中,得到proposals和proposals_loss;然后将proposals,images,features等输入到roi_heads得到detections和detector_loss;如果在训练模式下,则返回loss(proposals_loss和detection_loss),在推理模式下,则返回detections。

http://www.yayakq.cn/news/411687/

相关文章:

  • 网站建设实例pdf下载网站建设方案总结语
  • 合肥外贸网站建设公司庐江网站制作公司
  • 湖南seo网站设计网页设计与制作首页
  • 长沙学做网站建设做抽奖网站用什么cms
  • 小羚羊网站怎么建设万虹点读机如何做系统下载网站
  • 隆尧网站制作wordpress彩色标签云插件
  • 一家专门做鞋子的网站旅游网站开发书籍
  • 外贸网站推广优化查看网站有没有做301
  • 全球云邮登陆网站什么是做学院网站
  • 中国建设网官方网站济宁国泰网站 建设在作用是什么
  • 古镇建设网站网站如何做流量赚钱
  • 网站策划案怎么做网站访客记录 是后台做吗
  • 杭州网站建设那家好学校官网网页设计模板
  • 重庆 机械有限公司 沙坪坝网站建设十大中文网站排名
  • 电子科技公司网站网页设计有没有做微信的动态图网站
  • 北京网站建设找德冿朴假快递单制作软件app
  • 网站建设元网站建设及推广的书
  • 网站建设的简历谷歌浏览器网页版入口
  • 做购物网站的初衷软件开发专业好就业吗
  • 泰安手机网站建设报价宣传册样式
  • 室内设计装修网站写代码做网站
  • 唐山网站建设400多少钱个人网页在线制作
  • 广东平台网站建设平台番禺区住房和建设局网站
  • 网站开发 超速云页面设计是什么意思
  • 网站建设国标行业分类大气黑色机械企业网站源码
  • 网站的站点建设顶岗实践网站开发
  • 个人站长做导航网站rio门户网站的制作
  • 建设网站的价钱wordpress asp
  • 有阿里空间怎么做网站深圳网站建设哪家比较专业
  • 新手做网站视频教程如何做直播类网站