当前位置: 首页 > news >正文

建设公司网站要注意哪些企业名录搜索软件下载免费

建设公司网站要注意哪些,企业名录搜索软件下载免费,做外贸网站推广的步骤,做优秀网站SVM,即支持向量机(Support Vector Machine),是一种常见的机器学习算法,用于分类和回归分析。SVM的基本思想是将数据集映射到高维空间中,在该空间中找到一个最优的超平面,将不同类别的数据点分开…

    SVM,即支持向量机(Support Vector Machine),是一种常见的机器学习算法,用于分类和回归分析。SVM的基本思想是将数据集映射到高维空间中,在该空间中找到一个最优的超平面,将不同类别的数据点分开。这个最优的超平面可以最大化不同类别数据点之间的间隔,从而使得分类的边界更加鲁棒和稳定。在实际应用中,SVM的核函数可以使用不同的变换,包括线性核、多项式核和径向基函数(RBF)核等,以适应不同的数据类型和特征空间。SVM算法在分类和回归问题上都具有很好的表现,并且具有较强的泛化能力和鲁棒性。 

    SVM本身是一个二值分类器,最初是为二分类问题设计的,也就是回答Yes或者是No。而实际上我们要解决的问题,可能是多分类的情况,比如对文本进行分类,或者对图像进行识别。针对这种情况,我们可以将多个二分类器组合起来形成一个多分类器,常见的方法有“一对多法”和“一对一法”两种。

1.一对多法

假设我们要把物体分成A、B、C、D四种分类,那么我们可以先把其中的一类作为分类1,其他类统一归为分类2。这样我们可以构造4种SVM,分别为以下的情况:

(1)样本A作为正集,B,C,D作为负集;

(2)样本B作为正集,A,C,D作为负集;

(3)样本C作为正集,A,B,D作为负集;

(4)样本D作为正集,A,B,C作为负集。

这种方法,针对K个分类,需要训练K个分类器,分类速度较快,但训练速度较慢,因为每个分类器都需要对全部样本进行训练,而且负样本数量远大于正样本数量,会造成样本不对称的情况,而且当增加新的分类,比如第K+1类时,需要重新对分类器进行构造。

2.一对一法

一对一法的初衷是想在训练的时候更加灵活。我们可以在任意两类样本之间构造一个SVM,这样针对K类的样本,就会有C(k,2)类分类器。

比如我们想要划分A、B、C三个类,可以构造3个分类器:

(1)分类器1:A、B;

(2)分类器2:A、C;

(3)分类器3:B、C。

当对一个未知样本进行分类时,每一个分类器都会有一个分类结果,即为1票,最终得票最多的类别就是整个未知样本的类别。这样做的好处是,如果新增一类,不需要重新训练所有的SVM,只需要训练和新增这一类样本的分类器。而且这种方式在训练单个SVM模型的时候,训练速度快。上面介绍了SVM的相关概念,在实际应用中,如果要使用SVM完成分类问题,实际包含5步骤

  1. 收集数据:收集用于分类的数据集,并将每个数据点标记为其相应的类别。

  2. 特征选择和数据预处理:选择用于分类的特征,对数据进行预处理,如归一化、缩放或标准化等,以便在训练模型之前使数据更具有可比性和可解释性。

  3. 分割训练集和测试集:将数据集分为训练集和测试集,以便训练模型并评估其性能。

  4. 训练模型:使用训练集训练SVM模型,并选择适当的核函数和参数。

  5. 模型评估:使用测试集评估模型的性能,并根据需要调整模型参数和核函数。

  6. 应用模型:使用训练好的SVM模型对新数据进行分类,预测其类别,并根据预测结果进行相应的决策或操作。

下面是使用Skitlearn提供的函数,采用SVM模型完成分类任务的demo代码。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline# Load the iris dataset
iris = datasets.load_iris()# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(iris.data,iris.target,test_size=0.3,random_state=42)# Create a pipeline that standardizes the data and applies an RBF kernel SVM
pipeline = make_pipeline(StandardScaler(), SVC(kernel='rbf'))# Train the pipeline on the training data
pipeline.fit(X_train, y_train)# Use the trained pipeline to make predictions on the testing data
y_pred = pipeline.predict(X_test)# Calculate the accuracy of the pipeline
accuracy = accuracy_score(y_test, y_pred)print(f"Accuracy: {accuracy}")

在上面的demo代码中,make_pipeline(StandardScaler, SVC(kernel='rbf'))中传入的核函数,SVC是Support Vector Classification的缩写,SVC的构造函数:model = svm.SVC(kernel=‘rbf’, C=1.0, gamma=‘auto’),这里有三个重要的参数kernel、C和gamma。kernel代表核函数的选择,它有四种选择,只不过默认是rbf,即高斯核函数。

  1. linear:线性核函数

  2. poly:多项式核函数

  3. rbf:高斯核函数(默认)

  4. sigmoid:sigmoid核函数

这四种函数代表不同的映射方式,线性核函数,是在数据线性可分的情况下使用的,运算速度快,效果好。不足在于它不能处理线性不可分的数据。多项式核函数可以将数据从低维空间映射到高维空间,但参数比较多,计算量大。高斯核函数同样可以将样本映射到高维空间,但相比于多项式核函数来说所需的参数比较少,通常性能不错,所以是默认使用的核函数。sigmoid经常用在神经网络的映射中。因此当选用sigmoid核函数时,SVM实现的是多层神经网络。

上面的Demo是比较简单的一个例子,下面再来看一个稍微复杂的Demo例子。下面这个例子多了数据处理和特征选择的过程,相比较上面的例子,最终还是生成一份特性矩阵和lable的数据。

# -*- coding: utf-8 -*-
# 乳腺癌诊断分类
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics
from sklearn.preprocessing import StandardScaler# 加载数据集,你需要把数据放到目录中
data = pd.read_csv("./breast_cancer_data/data.csv")# 数据探索
# 因为数据集中列比较多,我们需要把dataframe中的列全部显示出来
pd.set_option('display.max_columns', None)
print(data.columns)
print(data.head(5))
print(data.describe())# 将特征字段分成3组
features_mean = list(data.columns[2:12])
features_se = list(data.columns[12:22])
features_worst = list(data.columns[22:32])# 数据清洗
# ID列没有用,删除该列
data.drop("id", axis=1, inplace=True)
# 将B良性替换为0,M恶性替换为1
data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0})# 将肿瘤诊断结果可视化
sns.countplot(data['diagnosis'], label="Count")
plt.show()
# 用热力图呈现features_mean字段之间的相关性
corr = data[features_mean].corr()
plt.figure(figsize=(14, 14))
# annot=True显示每个方格的数据
sns.heatmap(corr, annot=True)
plt.show()# 特征选择
features_remain = ['radius_mean', 'texture_mean', 'smoothness_mean', 'compactness_mean','symmetry_mean', 'fractal_dimension_mean'
]# 抽取30%的数据作为测试集,其余作为训练集
train, test = train_test_split(data,test_size=0.3)  # in this our main data is splitted into train and test
# 抽取特征选择的数值作为训练和测试数据
train_X = train[features_remain]
train_y = train['diagnosis']
test_X = test[features_remain]
test_y = test['diagnosis']# 采用Z-Score规范化数据,保证每个特征维度的数据均值为0,方差为1
ss = StandardScaler()
train_X = ss.fit_transform(train_X)
test_X = ss.transform(test_X)# 创建SVM分类器
model = svm.SVC()
# 用训练集做训练
model.fit(train_X, train_y)
# 用测试集做预测
prediction = model.predict(test_X)
print('准确率: ', metrics.accuracy_score(prediction, test_y))

原始数据Data.csv是一份检测乳腺癌特征值的数据,其中Diagnosis为M表示阳性,为B表示阴性。 后面的字段都是特征值,每种特征值包含mean,se,worst三种情况,上面的demo代码中选取了mean作为特性字段,对数据进行降维处理。

http://www.yayakq.cn/news/937122/

相关文章:

  • 网站打不开的原因网站备案 超链接
  • 国外购物网站怎么做南宁关键词优化服务
  • 公司企业网站源码网站备案要多久
  • 网站建设经验材料昆明做网站设计
  • 怎么用自己注册的域名做网站001做淘宝代码的网站
  • 网站弹窗代码做淘宝客网站
  • 中交路桥建设有限公司网站网站建设与管理属于计算机专业吗
  • phpcms网站模版南阳做网站哪家好
  • 湛江模板建站平台能上网但是浏览器打不开网页
  • 广州网站建设报价单网站在排版有哪些方法
  • 公司网站备案流程版图设计工资一般多少
  • 商业网站建设规划范文网站404网页界面psd源文件模板
  • 中英文网站怎么实现百度如何提交网站
  • 网站域名 文件夹网站推广策略含义
  • 湘西吉首市建设局网站网站开发公司巨推
  • 常用的网站建设技术有什么软件新冠2024中国又要封城了
  • 网站系统正在升级维护怎么做网站访问统计
  • 淘宝购物网站的建设wordpress文章副标题
  • wordpress发帖软件seo排名软件哪个好
  • google如何提交网站虚拟现实技术
  • 网站建设 9a免费下载建筑图集规范的网站
  • 重庆渝云建设有限公司官方网站常州好搜网络科技有限公司
  • 西宁做网站哪家好网站中文字内容左右切换的js代码
  • 个人网站logo生成自己建的网站如何推广
  • 松江建设新城有限公司网站网站建设1000zhu
  • 阿里巴巴网站建设初衷wordpress分类更改
  • 哪里找需要网站建设的电脑自带做网站的软件
  • 网站前置审批项为什么需要响应式网站
  • 企业网站建设实训报告体会wordpress免费文章采集器
  • 品牌网站建设十小蝌蚪w微信网站开发