当前位置: 首页 > news >正文

佛山做网站大连工程信息招标网

佛山做网站,大连工程信息招标网,学校网站建设学生文明上网,怎么创建网站?引入&#xff1a; 如上图&#xff0c;已知图G。 问节点1到节点3的最短距离。 可心算而出为d[1,2]d[2,3]112,比d[1,3]要小。 求最短路径算法&#xff1a; 1.Floyd(弗洛伊德) 是一种基于三角形不等式的多源最短路径算法。边权可以为负数 表现为a[i,j]a[j,k]<a[i,k]。 …

 引入:

如上图,已知图G。

问节点1到节点3的最短距离。

可心算而出为d[1,2]+d[2,3]=1+1=2,比d[1,3]要小。

求最短路径算法:

1.Floyd(弗洛伊德)

是一种基于三角形不等式的多源最短路径算法。边权可以为负数

表现为a[i,j]+a[j,k]<a[i,k]。

算法思想:

枚举“中转站”(k),“起点”(i),“终点”(j)

设d[i,j]为由i点到j点的最短路径

则 d[i,j]=min(d[i,j],d[i,k]+d[k,j])

初始化d[i,j]为无穷大 (1\leq i\leq n,1\leq j\leq n

算法模板如下:
 

inline int Floyd(int n,int st,int ed)// n个点,起点st,终点ed,返回st到ed的最短距离
{int d[n][n];memset(d,0x3f,sizeof(d));for(int i=1;i<=n;i++) d[i][i]=0;for(int k=1;k<=n;k++){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){d[i][j]=min(d[i][j],d[i][k]+d[k][j]);}}}return d[st][ed];
}

 补充:Floyd输出最短路径。

题目:有向图中任意两点最短路径(floyd)

题目描述

  一个含n个结点的有向图(注意:是有向图!!),以矩阵存储方式给出,请求出指定的多组两个点之间的最短距离及其最短路径。

输入输出格式
输入格式:

  第1行,一个整数n(0 < n < 300 ),表示有向图中结点的个数。
  第2行到第(n+1)行,是一个n*n的矩阵,表示无向图中各结点之间的联结情况,矩阵中的数据为小于1000的正整数,其中 -1 表示无穷大!!
  第(n+2)行,一个整数m,表示接下来有m组顶点 < i , j >对 ,其中,i是起点,j是终点,且i不等于j。
  接下来有m行,每行两个整数,中间一个空格间隔,分别表示i和j,表示求解i点到j点的最短距离及最短路径。

  注:输入数据已经确保答案每一组顶点间的最短路径是唯一的,无多解数据存在,顶点编号用数字表示,从1开始编号,至n结束!

输出格式:

  共 2m 行。
  第(m-1)*2+1行,一个整数,表示第m组顶点的最短距离,若两点间距离为无穷大,则输出 -1。
  第(m-1)*2+2行,用顶点编号表示的路径序列,各顶点编号间用一个空格间隔,表示第m组顶点的最短路径,若两点间距离为无穷大,则输出的路径序列为 -1。

输入输出样例
输入样例#1:

3
0 4 11
6 0 2
3 -1 0
2
2 1
3 2 

输出样例#1:

5
2 3 1
7
3 1 2

代码如下:
 

#include<bits/stdc++.h>
using namespace std;
int n,q;
int d[10001][10001],pre[10001][10001];
void dg(int i,int j)
{if(i==j||pre[i][j]==0) return;int k=pre[i][j];dg(i,k);dg(k,j);
}
int main()
{cin>>n;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){cin>>d[i][j];if(d[i][j]==-1){d[i][j]=0x7fffff;}}}for(int k=1;k<=n;k++){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(d[i][k]+d[k][j]<d[i][j]){d[i][j]=d[i][k]+d[k][j];pre[i][j]=k;}}}}cin>>q;for(int i=1;i<=q;i++){int x,y;cin>>x>>y;cout<<d[x][y]<<endl;cout<<x<<" ";dg(x,y);cout<<y;cout<<endl;}return 0;
}

传递闭包(连通性)

d[i,j]=d[i,j]|(d[i,k]&d[k,j])
d[i,j]表示i与j是否连通。

题目:刻录光盘

题目描述

  在FJOI2010夏令营快要结束的时候,很多营员提出来要把整个夏令营期间的资料刻录成一张光盘给大家,以便大家回去后继续学习。组委会觉得这个主意不错!可是组委会一时没有足够的空光盘,没法保证每个人都能拿到刻录上资料的光盘,怎么办呢?!

  DYJ分析了一下所有营员的地域关系,发现有些营员是一个城市的,其实他们只需要一张就可以了,因为一个人拿到光盘后,其他人可以带着U盘之类的东西去拷贝啊!

  他们愿意某一些人到他那儿拷贝资料,当然也可能不愿意让另外一些人到他那儿拷贝资料,这与我们FJOI宣扬的团队合作精神格格不入!!!

  现在假设总共有N个营员(2<=N<=200),每个营员的编号为1~N。DYJ给每个人发了一张调查表,让每个营员填上自己愿意让哪些人到他那儿拷贝资料。当然,如果A愿意把资料拷贝给B,而B又愿意把资料拷贝给C,则一旦A获得了资料,则B,C都会获得资料。

  现在,请你编写一个程序,根据回收上来的调查表,帮助DYJ计算出组委会至少要刻录多少张光盘,才能保证所有营员回去后都能得到夏令营资料?

输入输出格式

输入格式:

先是一个数N,接下来的N行,分别表示各个营员愿意把自己获得的资料拷贝给其他哪些营员。即输入数据的第i+1行表示第i个营员愿意把资料拷贝给那些营员的编号,以一个0结束。如果一个营员不愿意拷贝资料给任何人,则相应的行只有1个0,一行中的若干数之间用一个空格隔开。

输出格式:

一个正整数,表示最少要刻录的光盘数。

输入输出样例

输入样例#1:

5
2 4 3 0
4 5 0
0
0
1 0

输出样例#1:

1

代码:

#include<bits/stdc++.h>
using namespace std;
int f[100001],d[300][300],g[100001],ans;
int main()
{int n;cin>>n;memset(d,0x3f,sizeof(d));for(int i=1;i<=n;i++){f[i]=i;}for(int i=1;i<=n;i++){int x;while(1){cin>>x;if(x==0) break;d[i][x]=1;}}for(int k=1;k<=n;k++){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(i!=j&&j!=k&&k!=i){if(d[i][k]==1&&d[k][j]==1){d[i][j]=1;}}}}}for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(d[i][j]==1){f[j]=f[i];}}}for(int i=1;i<=n;i++) {if(f[i]==i) {ans++;}}cout<<ans;return 0;
} 

2.dijkstra(狄克斯特拉,迪杰斯特拉)

基于贪心的单源最短路径算法。边权必须为正数

基本思想:

设d[i]为起点s到终点i的最短路径,a[i,j]为点i到点j边权。

1.找  min\begin{Bmatrix} d[i] \end{Bmatrix}\left ( 1\leqslant i\leqslant n ,vis[i]=true \right ),并将其用k记录

2.vis[k]=true

3.d[i]=min\begin{Bmatrix} d[i],d[k]+a[k][i] \end{Bmatrix}\left ( 1\leqslant i\leqslant n \right ) 松弛操作,用k来更新图中所有点。

int dijkstra(int n,int st,int ed)
{int dis[n+1],vis[n+1];memset(dis,0x3f,sizeof(dis));memset(vis,0,sizeof(vis));dis[st]=0;for(int i=1;i<=n;i++){int k,minn=0x7fffff;for(int j=1;j<=n;j++)if(!vis[j]&&dis[j]<minn) minn=dis[j],k=j;vis[k]=true;for(int j=1;j<=n;j++) d[j]=min(d[j],d[k]+a[k][j]);}return d[ed];
}

堆优化dijkstra:
 

typedef pair<int,int> P;
struct node{int to;int next;int w;
}edge[10000010];
int head[10000010],d[10000010];
int cnt;
int n,m,x,y,z,s;
void add_edge(int u,int v,int w)
{edge[cnt].to=v;edge[cnt].w=w;edge[cnt].next=head[u];head[u]=cnt++;
}
void dijkstra(int s)
{priority_queue< P,vector<P>,greater<P> >q;memset(d,0x3f,sizeof(d));d[s]=0;q.push(P(0,s));while(!q.empty()){P p=q.top();q.pop();int u=p.second;if(d[u]<p.first) continue;for(int i=head[u];i!=-1;i=edge[i].next){int v=edge[i].to;if(d[v]>d[u]+edge[i].w){d[v]=d[u]+edge[i].w;q.push(P(d[v],v));}}}
}

3.Bellman-Ford

O(n*m) 但有更优的,由其转换而来的Spfa算法,不再赘述。边权可以为负数

4.Spfa

基于bellman-Ford,用队列优化的单源最短路径算法,边权可以为负数,可用于判断负环。

代码如下:

    int head=0,tail=1;team[1]=s,vis[s]=1,dis[s]=0;while(head<tail){head=(head+1)%10000;int u=team[head];vis[u]=0;for(int i=1;i<=len[u];i++){int v=le[u][i];if(dis[v]>dis[u]+a[u][v]){dis[v]=dis[u]+a[u][v];if(vis[v]==0){tail=(tail+1)%10000;team[tail]=v;vis[v]=1;}}}}

http://www.yayakq.cn/news/363670/

相关文章:

  • 网站建设 优势怎么样可以做自己的网站
  • 备案网站内容怎么写wordpress 更改ip
  • 开网站做销售快照网站
  • 网站空间需要备案吗网站源码下载pdf文件
  • 有没有什么网站专门帮人做问卷庆阳网站设计公司
  • 电商购物网站模板下载个人做网站的注意事项
  • 自适应网站制作方案wordpress二级域名设置
  • 学网站建设能赚钱吗巴中交通建设有限公司网站
  • 怎么做好网站青州网站设计
  • 做网站3个月江苏建设执业资格注册中心官方网站
  • 高校网站建设电子商务营销策略论文
  • 惠州网站建设创业wordpress keyshot
  • 网站建站工具怎样查公司是不是正规公司
  • 服务器网站301重定向怎么做网站代码 上传 wordpress 空间
  • 龙海市城乡建设局网站南京网站设计优化公司
  • 网站建设哪家更专业wordpress开发sns
  • 论网站建设技术的作者是谁物流托运
  • 哪个网站虚拟主机好北京优化网站
  • 做产品网站要备案吗长沙电商运营培训
  • 建设工程教育网建设工程类的考试辅导网站视频直播网站建设费用
  • 做网站论文网站托管好吗
  • 网站建设的系统设计株洲网站建设技术公司
  • 单页网站建站wordpress 吾爱破解
  • 两学一做电脑答题网站个人网站如何进行网络推广
  • 微信网站制作公司哪家好舟山网站开发
  • 辽宁建设资质申报网站温州专业微网站制作多少钱
  • 上海网站开发建设电话休闲食品网站建设规划书
  • 博客和网站有什么不同在线网站分析工具
  • 容桂网站制作动态网站建设哪家有名
  • 建行官方网站多少钱合肥做网站设计