当前位置: 首页 > news >正文

网站建设服务好网站建设维护书

网站建设服务好,网站建设维护书,官方网站建设合作协议,网页视频下载链接[TOC]PCL中点云分割模块的学习 学习背景 参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16 学习内容 PCL中实现欧式聚类提取。在点云处理中,聚类是一种常见的任务,它将点云数据划分为多…

@[TOC]PCL中点云分割模块的学习

学习背景

参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16

学习内容

PCL中实现欧式聚类提取。在点云处理中,聚类是一种常见的任务,它将点云数据划分为多个独立的簇或集群。每个簇代表点云中的一个独立物体或区域。聚类可以帮助我们从复杂的点云场景中识别出单独的物体,为后续的物体识别、分类和其他处理任务奠定基础。

源代码及所用函数

源代码

#include<pcl/ModelCoefficients.h>//定义名为 pcl::ModelCoefficients 的类,用于存储模型的系数
#include<pcl/point_types.h>
#include<pcl/io/pcd_io.h>
#include<pcl/filters/extract_indices.h>
#include<pcl/filters/voxel_grid.h>
#include<pcl/kdtree/kdtree.h>
#include<pcl/sample_consensus/method_types.h>//随机参数估计方法头文件
#include<pcl/sample_consensus/model_types.h>//定义 PCL 中用于随机采样一致性 (SAC) 方法的枚举类型
#include<pcl/segmentation/sac_segmentation.h>//提供 PCL 中用于基于随机采样一致性 (SAC) 方法进行点云分割的类和函数
#include<pcl/segmentation/extract_clusters.h>//包含 PCL (Point Cloud Library) 中用于点云聚类的头文件/******************************************************************************打开点云数据,并对点云进行滤波重采样预处理,然后采用平面分割模型对点云进行分割处理提取出点云中所有在平面上的点集,并将其存盘
******************************************************************************/
int main(int argc,char** argv)
{/*********************************************************读取点云数据***************************/pcl::PCDReader reader;pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);reader.read("/home/jojo/PointCloud/table_400.pcd",*cloud);std::cout << "滤波之前有" << cloud->points.size() << "个点" << std::endl;/*************************************创建过滤对象:使用 1 厘米大小的叶片对数据集进行下采样************///使用体素化网格方法实现下采样,即减少点的数量 减少点云数据,并同时保存点云的形状特征   pcl::VoxelGrid<pcl::PointXYZ> vg;pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZ>);vg.setInputCloud(cloud);//设置需要过滤的点云给滤波对象vg.setLeafSize(0.01f,0.01f,0.01f);//设置滤波时创建的体素体积为1cm的立方体vg.filter(*cloud_filtered); //执行滤波处理,存储输出std::cout << "滤波之后有" << cloud_filtered->points.size() << "个点" << std::endl;/****************************创建平面模型分割的对象并设置参数************************************/pcl::SACSegmentation<pcl::PointXYZ> seg;pcl::PointIndices::Ptr inliers(new pcl::PointIndices);pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());pcl::PCDWriter writer;seg.setOptimizeCoefficients(true);seg.setModelType(pcl::SACMODEL_PLANE);//分割模型seg.setMethodType(pcl::SAC_RANSAC);//随机参数估计方法seg.setMaxIterations(100);//最大的迭代次数seg.setDistanceThreshold(0.02);//设置阈值int i = 0,nr_points = (int)cloud_filtered->points.size();while (cloud_filtered->points.size() > 0.3 * nr_points){/**********************************从剩余云中分离出最大的平面***************************/seg.setInputCloud(cloud_filtered);seg.segment(*inliers,*coefficients);if(inliers->indices.size() == 0){std::cout << "找不到平面对象" << std::endl;break;}pcl::ExtractIndices<pcl::PointXYZ> extract;extract.setInputCloud(cloud_filtered);extract.setIndices(inliers);extract.setNegative(false);/********************************获取与平面相关的点**********************************/extract.filter(*cloud_plane);std::cout << "代表平面组件的点云有:" << cloud_plane->points.size() << "个" << std::endl;/******************************移去平面局内点,提取剩余点云****************************/extract.setNegative(true);extract.filter(*cloud_f);*cloud_filtered = *cloud_f;}/******************************创建KD树对象****************************************/pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);kdtree->setInputCloud(cloud_filtered);std::vector<pcl::PointIndices> cluster_indices;pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;//欧式聚类对象ec.setClusterTolerance(0.02);// 设置近邻搜索的搜索半径为2cmec.setMinClusterSize(100);//设置一个聚类需要的最少的点数目为100ec.setMaxClusterSize(25000);//设置一个聚类需要的最大点数目为25000ec.setSearchMethod(kdtree);//设置点云的搜索机制ec.setInputCloud(cloud_filtered);ec.extract(cluster_indices);//从点云中提取聚类,并将点云索引保存在cluster_indices中//迭代访问点云索引cluster_indices,直到分割处所有聚类int j = 0;for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin();it != cluster_indices.end();++it){pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);for (std::vector<int>::const_iterator pit = it->indices.begin();pit != it->indices.end();pit++){cloud_cluster->points.push_back(cloud_filtered->points[*pit]);}cloud_cluster->width = cloud_cluster->points.size();cloud_cluster->height = 1;cloud_cluster->is_dense = true;std::cout << "代表集群的点云:" << cloud_cluster->points.size() << "个" << std::endl;std::stringstream ss;ss << "cloud_cluster_" << j << ".pcd";writer.write<pcl::PointXYZ>(ss.str(),*cloud_cluster,false);j++;}return 0;}

CMakeLists.txt

cmake_minimum_required(VERSION 3.16 FATAL_ERROR)#指定CMake的最低版本要求为3.16
project(project)#设置项目名称
find_package(PCL 1.10 REQUIRED)#查找PCL库,要求版本为1.10或更高。
include_directories(${PCL_INCLUDE_DIRS})#将PCL库的头文件目录添加到包含路径中
link_directories(${PCL_LIBRARY_DIRS})#将PCL库的库文件目录添加到链接器搜索路径中。
add_definitions(${PCL_DEFINITIONS})#添加PCL库的编译器定义
add_executable (cluster_extraction cluster_extraction.cpp)
target_link_libraries (cluster_extraction ${PCL_LIBRARIES})#将PCL库链接到可执行文件目标。

运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数

  • pcl/segmentation/extract_clusters.h包含 PCL (Point Cloud Library) 中用于点云聚类的头文件

补充内容

http://www.yayakq.cn/news/353187/

相关文章:

  • 用花生壳怎么做网站的服务器wordpress 绿色主题
  • 购车网站设计重庆建设工程信息网官网中苏业盛
  • 怎样做心理咨询网站搏彩网站开发建设
  • 王晴儿网站建设方案vi系统设计是什么
  • 网站建设实训心得 总结无锡锡山网站建设
  • 老榕树建站软件嘉兴网站建设平台
  • 前期做网站宣传费用怎样做账中国建筑网官网平台
  • 视频播放网站开发的报告宜昌建设网站
  • 企业网站宣传建设企业信息平台系统
  • 装修网站怎么做推广哈尔滨seo关键字优化
  • 中国档案网站建设现状研究自己建服务器做网站违法
  • h5 移动 网站 开发公司页面设计
  • 网站建设业务怎么开展网站建设的行业
  • 什么网站做h5没有广告庐江魅力网做网站号码
  • 网站包括哪些内容吗网站建设的难处
  • dede 后台 不能保存网站名称网站的维护费用
  • 我的世界服务器网站建设在哪能学到网站建设
  • 优秀定制网站建设案例一级a做爰片免费网站天天看
  • seo教程技术整站优化对网站的建议
  • 长春专业做网站公司wordpress 门户 主题
  • 用jsp做网站默认显示this is my jsp pageapp编程软件有哪些
  • 深圳建设网站开发抖音代运营报价单(仅供参考)
  • 简述你对于网站建设的认识wordpress md 方程组
  • 枣阳网站开发公司哪家好什么公司可以做网站
  • wordpress网站打开卡wordpress+禁用feed
  • 网站做任务赚佣金网站搭建行业
  • 大型手机网站制作网络推广文案范文
  • 免费看电影的网站是什么网站策划需求
  • 百度云建站教程个人做seo怎么赚钱
  • 上海国外网站建设受欢迎的宜昌网站建设