当前位置: 首页 > news >正文

深圳微网站搭建wordpress 247

深圳微网站搭建,wordpress 247,建设中专网站,用flash做的ppt模板下载网站使用 NumPy 和 Matplotlib 进行高级数据可视化:实践指南 数据科学和工程实践中,NumPy 和 Matplotlib 是强大的组合工具。本文将进一步展示如何借助这两个库进行更复杂的可视化任务,例如创建多曲线、叠加图、动态可视化等场景。 一、环境准备…

使用 NumPy 和 Matplotlib 进行高级数据可视化:实践指南

数据科学和工程实践中,NumPyMatplotlib 是强大的组合工具。本文将进一步展示如何借助这两个库进行更复杂的可视化任务,例如创建多曲线、叠加图、动态可视化等场景。


一、环境准备

确保你已经安装 NumPyMatplotlib

pip install numpy matplotlib

引入必要库:

import numpy as np
import matplotlib.pyplot as plt

二、NumPy 高级数据生成

以下示例生成多组数据,以便展示复杂的图表绘制。

# 创建时间序列数据
time = np.linspace(0, 20, 200)# 多种波形生成
sin_wave = np.sin(time)
cos_wave = np.cos(time)
sin2_wave = np.sin(time + np.pi / 4)  # 相位偏移的正弦波
noise = 0.3 * np.random.randn(200)    # 添加噪声# 混合信号数据
mixed_signal = sin_wave + noise

这些数据将用于展示多种可视化技术。


三、叠加多条曲线

在工程和科研中,经常需要将多条曲线叠加在一起进行比较。

plt.figure(figsize=(10, 6))# 绘制多条曲线
plt.plot(time, sin_wave, label='Sine Wave', linestyle='-', color='b')
plt.plot(time, cos_wave, label='Cosine Wave', linestyle='--', color='r')
plt.plot(time, sin2_wave, label='Phase Shifted Sine', linestyle='-.', color='g')# 添加图例、标题和坐标轴标签
plt.title('Multiple Waveforms')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend(loc='upper right')# 展示图表
plt.show()

在这里插入图片描述

效果:

这个图表将正弦、余弦以及相位偏移的正弦波叠加在一起,帮助分析它们的相位和幅度关系。


四、动态变化的折线图

有时我们需要动态观察数据的变化,下面的示例展示了如何用 FuncAnimation 实现动态折线图。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation# 生成数据:时间序列和正弦波
time = np.linspace(0, 20, 200)
sin_wave = np.sin(time)# 创建图表和轴
fig, ax = plt.subplots()
ax.set_xlim(0, 20)  # X轴范围
ax.set_ylim(-1.5, 1.5)  # Y轴范围
line, = ax.plot([], [], lw=2, color='b')  # 初始空折线# 初始化函数:将折线置为空白
def init():line.set_data([], [])return line,# 动态更新函数:逐帧更新折线的数据
def update(frame):x = time[:frame]  # 每帧展示一部分时间序列数据y = sin_wave[:frame]  # 每帧展示对应的正弦波数据line.set_data(x, y)return line,# 创建动画,frames 控制动画的总帧数,interval 设置每帧间隔时间(毫秒)
ani = FuncAnimation(fig, update, frames=len(time), init_func=init, blit=True, interval=50)# 展示动画
plt.show()

在这里插入图片描述

效果:

该动画演示了正弦波随着时间的动态绘制过程。


五、双 Y 轴图表

在某些场景下,我们需要在同一个图表上显示两种不同量纲的数据。

fig, ax1 = plt.subplots()# 绘制第一个 Y 轴上的数据
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Sine Wave', color='b')
ax1.plot(time, sin_wave, color='b')
ax1.tick_params(axis='y', labelcolor='b')# 创建共享 X 轴的第二个 Y 轴
ax2 = ax1.twinx()
ax2.set_ylabel('Mixed Signal', color='r')
ax2.plot(time, mixed_signal, color='r')
ax2.tick_params(axis='y', labelcolor='r')# 展示图表
fig.tight_layout()
plt.show()

在这里插入图片描述

效果:

这幅图展示了正弦波和混合信号,分别对应于左右两个 Y 轴,使得不同数据量的趋势更直观。


六、热力图(Heatmap)

热力图可以有效地展示二维数据的密集分布。

# 生成二维随机数据
data = np.random.rand(10, 10)# 绘制热力图
plt.imshow(data, cmap='viridis', interpolation='nearest')
plt.colorbar()  # 添加颜色条plt.title('Heatmap Example')
plt.show()

在这里插入图片描述

效果:

热力图可以用于分析二维数据的密集度,如矩阵值或图像处理中的像素值。


七、3D 数据可视化

Matplotlib 还支持 3D 可视化,这对于科学计算和复杂数据展示非常有用。

from mpl_toolkits.mplot3d import Axes3D# 创建网格数据
X = np.linspace(-5, 5, 50)
Y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(X, Y)
Z = np.sin(np.sqrt(X**2 + Y**2))# 创建 3D 图表
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制 3D 曲面
ax.plot_surface(X, Y, Z, cmap='viridis')# 添加标题
ax.set_title('3D Surface Plot')
plt.show()

在这里插入图片描述

效果:

3D 曲面图展示了二维函数的空间分布,可用于展示地形数据、数学函数等。


八、结论

本文介绍了使用 NumPyMatplotlib 进行更复杂的数据可视化方法,包括多曲线叠加、动态折线图、双 Y 轴图表、热力图和 3D 可视化。这些技巧可以帮助你更全面地展示数据,并揭示数据背后的复杂关系。

希望这篇博客能帮助你更好地掌握 NumPy 和 Matplotlib 的高级用法!

http://www.yayakq.cn/news/390644/

相关文章:

  • 天津建设银行官网站自己做的网站打不开
  • 上饶网站建设多少钱成都网站建设龙兵网络
  • 成都网站建设源码世纪网站cms
  • 科技公司建设网站百度做的网站 后台管理怎么进入
  • 企业网站建设的基本原则为公司网站制作知乎
  • 男男做的视频网站好手机网站自助建
  • 淘宝站外引流推广方法韩国设计app网站有哪些
  • 违禁网站用什么浏览器浅谈高校门户网站建设的规范标准
  • 网站电脑培训班附近有吗公司图标设计大全免费
  • 59网站一起做网店广州挂马网站教程
  • 做网站网页尺寸是多少钱病历图片在线制作
  • 桂林本地网站实时热搜榜
  • 小型教育网站建设问题存在的深圳软件开发培训推荐
  • 做网站年赚千万装修公司谁做网站
  • 做网站怎样投放广告头条推广平台有哪些
  • 网站开发求职信怎么做免费网页
  • 婚纱网站目录优化海珠区建网站
  • 一个微信小程序大概多少钱龙岩seo外包公司
  • 网站代理网址没有网站做cpa
  • 网络服务商官方网站网店设计分析
  • 宁波北仑做网站广东省中山市网站
  • 一站式做网站公司相亲网站上做投资的女生
  • 内江网站seo建筑给排水识图教程久久建筑网
  • 课程网站开发与设计怎么查网站关键词密度
  • 杭州市江干区建设局网站南阳做网站aokuo
  • 湖南响应式网站哪家好做网站设计最好的公司
  • 模版网站做支付功能建筑公司查询
  • 建设网站中心网站联动是什么意思
  • dedeai网站最新国内最新新闻资讯
  • 网站设计优缺点做网站卖得出去吗