当前位置: 首页 > news >正文

简单的做海报的网站如何在网站上显示百度权重

简单的做海报的网站,如何在网站上显示百度权重,百度关键字排名软件,做网站刷赞qq怎么赚钱线性回归图以二维坐标系展示两个变量关系。数据点代表实际观测值,核心是线性回归线。此线通过统计方法确定,与数据点距离平方和最小。它反映变量间线性趋势,斜率正负决定相关方向。可用于预测因变量值,也能进行推断统计。在数据分…

线性回归图以二维坐标系展示两个变量关系。数据点代表实际观测值,核心是线性回归线。此线通过统计方法确定,与数据点距离平方和最小。它反映变量间线性趋势,斜率正负决定相关方向。可用于预测因变量值,也能进行推断统计。在数据分析、科学研究和实际应用中广泛使用,帮助人们理解变量关系、做出决策。

0x01 使用lm()函数

# 创建一些示例数据
x <- c(1:10)
y <- c(2, 4.5, 5, 7, 8.5, 9, 11, 12.5, 13, 14)# 绘制散点图
plot(x, y, main = "线性回归图", xlab = "自变量 X", ylab = "因变量 Y")# 进行线性回归分析
model <- lm(y ~ x)# 在散点图上添加线性回归线
abline(model, col = "red")# 输出回归方程
cat("回归方程:Y =", coef(model)[1], "+", coef(model)[2], "* X\n")

一、可以试用summary(model)来展示拟合的详细结果,其结果一般包含以下几个内容:
1.Call(调用信息)
显示用于创建线性回归模型的函数调用,包括模型公式和使用的数据。例如,如果使用lm(y ~ x)创建模型,这里会显示lm(formula = y ~ x)

2.Residuals(残差信息)
2.1 提供关于残差的一些基本统计信息,包括最小值、1 四分位数、中位数、3 四分位数和最大值。
2.2 残差是观测值与模型预测值之间的差异,分析残差可以帮助评估模型的拟合程度。

3.Coefficients(系数信息)
3.1 列出模型的系数估计值,包括截距(Intercept)和自变量的系数。
3.2 对于每个系数,提供估计值(Estimate)、标准误差(Std. Error)、t 值(t value)和 p 值(Pr (>|t|))。
3.3 估计值表示系数的大小,标准误差衡量估计值的不确定性。t 值用于检验系数是否显著不为零,p 值表示在原假设(系数为零)下观察到当前估计值或更极端值的概率。如果 p 值很小(通常小于某个显著性水平,如 0.05),则表明该系数在统计上是显著的。

4.Residual standard error(残差标准误差)
给出残差的标准误差估计值。它衡量了模型对数据的拟合程度,值越小表示模型拟合越好。

5.Multiple R-squared(复相关系数平方)和 Adjusted R-squared(调整后的复相关系数平方)
5.1 复相关系数平方表示因变量的变异中可以由自变量解释的比例。它的取值范围在 0 到 1 之间,值越接近 1 表示模型的拟合效果越好。
5.2 调整后的复相关系数平方考虑了模型中自变量的数量,防止随着自变量的增加而过度拟合。它在比较不同模型时更有用。

6.F-statistic(F 统计量)
用于检验整个模型的显著性。它比较了模型的解释能力与仅包含截距的模型。F 统计量大且对应的 p 值小表示模型在整体上是显著的。

总之,summary(model)提供了丰富的信息,帮助用户评估线性回归模型的质量、系数的显著性以及模型的整体拟合程度。

二、可以用fitted(model)来获取线性回归模型的拟合值。

三、可以用residuals(model)来获取线性回归模型的残差。

四、我们还可以根据我们的模型,对他进行一个随意的赋值,然后预测五门所想要的y值。

# 创建一个数据框 new,包含一个值为 3.16 的列 x,用于新数据点的预测
new <- data.frame(x = 3.16)
# 使用已建立的线性回归模型 model 对新数据 new 进行预测
# interval = "prediction" 表示计算预测区间
# level = 0.95 指定预测区间的置信水平为 95%
lm.pred <- predict(model, new, interval = "prediction", level = 0.95)
# 输出预测结果,包含点预测值以及 95%预测区间的上下限
lm.pred

通常返回的内容一般包括以下内容:
1.fit:点预测值,即对于给定的新x值,预测的因变量值。
2.lwrupr:95% 预测区间的下限和上限。

0x02 使用ggplot2包

一、使用stat_smooth()函数绘制线性回归图。

library(ggplot2)# 创建一个数据框 mydata,包含两列 x 和 y,x 是从 1 到 10 的整数序列,y 是一组对应的值
mydata <- data.frame(x = c(1:10), y = c(2, 4.5, 5, 7, 8.5, 9, 11, 12.5, 13, 14))# 创建一个 ggplot 对象 sp,以 mydata 为基础,将 x 和 y 分别映射到横纵坐标,添加散点图 geom_point()
sp <- ggplot(mydata, aes(x, y)) +geom_point()# 在 sp 对象上添加基于线性回归的平滑曲线,使用 stat_smooth()函数,method = lm 表示使用线性回归方法
sp + stat_smooth(method = lm)

二、可以使用level参数指定置信区间的水平。

sp + stat_smooth(method = lm, level = 0.99)

三、可以使用se = FALSE参数使绘制的线性回归图不显示标准误差带。

sp + stat_smooth(method = lm, se = FALSE)

四、调整与美化

# 使用 ggplot2 进行绘图
# 以数据框 mydata 为基础,将 x 列映射到横坐标,y 列映射到纵坐标
ggplot(mydata,aes(x,y)) +# 添加散点图,点的颜色设置为暗红色geom_point(colour = "darkred") +# 添加基于线性回归的平滑曲线,曲线颜色为黑色stat_smooth(method = lm,colour = "black") +# 设置图形的标题为"picture",横坐标标签为"year",纵坐标标签为"weight"labs(title = "picture",x = "year",y = "weight") +# 设置图形主题,使标题水平居中theme(plot.title = element_text(hjust = 0.5))
http://www.yayakq.cn/news/382538/

相关文章:

  • 社科联网站建设方案策划书果洛wap网站建设比较好
  • 百度站长平台电脑版网站建设 后台空间容量
  • 网站seo外链淮安谁家做网站
  • 电脑上不了建设厅网站企业服务网
  • 把网站扒下来以后怎么做装修网站模板源码
  • 深圳网站建设培训班网站布局英文
  • 怎么建立公司的网站吗青岛网站排名方案
  • 中国优秀网站设计淘宝网电脑版登录入口
  • 简述网站与网页的区别西安学建网站
  • 电子商务网站开发书例子做一个小程序要多少钱
  • wordpress tag 数字旅游企业seo官网分析报告
  • 做的网站能撤掉吗做网站要租服务器
  • 惠州城市建设建筑网站南京小程序开发公司
  • 建网站资料关于插画的网站
  • 南京市的网站是由那几家公司做的对招聘公司做评价的网站
  • 广州网站ui设计网站开发相关参考文献资料
  • 外管局网站上做存量权益登记网上哪里可以免费学编程
  • 旅游网站策划方案百度做的网站字体侵权
  • 无法解析您网站的域名3分钟宣传片报价明细
  • 门户网站开发投标文件.doc新发布手机
  • 北京地铁建设管理公司网站重新建设网站的申请报告
  • 网站源码程序下载网站开发免费维护一年
  • 网站做优化每天一定要更新wordpress163邮箱设置
  • 上海物流公司网站建设wordpress广告延时加载
  • 网站发布教程视频教程自助建站
  • 廊坊做网站手机制作app需要什么软件
  • 免费搭建个人博客网站公司网站开发视频
  • cp网站建设90设计网官网首页
  • 网站后台购买岳阳做网站 公司电话
  • 网站建设需要的网络技术网页源代码拿到后怎么使用