当前位置: 首页 > news >正文

广东十大网站建设网站怎样维护

广东十大网站建设,网站怎样维护,装修网站怎样做,智能优化大师下载【残差网络ResNet:残差块输入输出形状控制】 1 残差块输入输出形状控制程序2 查看经典的ResNet18模型 1 残差块输入输出形状控制程序 参考链接:https://arxiv.org/pdf/1512.03385.pdf 这是一个基本的残差块,由两层卷积组成前向传播 一层卷积…

【残差网络ResNet:残差块输入输出形状控制】

  • 1 残差块输入输出形状控制程序
  • 2 查看经典的ResNet18模型

1 残差块输入输出形状控制程序

在这里插入图片描述
参考链接:https://arxiv.org/pdf/1512.03385.pdf
这是一个基本的残差块,由两层卷积组成前向传播 + 一层卷积和批归一化与组成,为了与两层卷积组成前向传播的形状一致,一层卷积和批归一化用来控制输出的形状,最终相加形成新的与前向传播一致的形状

class ResNetBasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride):super().__init__()self.conv1 = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.residual = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = F.relu(self.bn1(out),inplace=True)out = self.conv2(out)out = self.bn2(out)res = self.residual(x)res = self.bn3(res)out += res                 # 直连return F.relu(out)

测试代码如下:

imgs_batch = torch.randn((8, 3, 224, 244))
resnet_block = ResNetBasicBlock(3, 16, 1)
pred_batch = resnet_block(imgs_batch)
print(pred_batch.shape)

输出如下:

torch.Size([8, 16, 224, 244])

使用tensorboard观察结构图代码:

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter('my_log/ResNetBasicBlock')
writer.add_graph(resnet_block, imgs_batch)
# 在promote中输入tensorboard --logdir path --host=127.0.0.1 ,path为绝对路径不加双引号,按照提示打开tensorboard

在这里插入图片描述

2 查看经典的ResNet18模型

resnet_model = torchvision.models.resnet18(pretrained=False)
print(resnet_model)

输出如下:

ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): BasicBlock((conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): BasicBlock((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer4): Sequential((0): BasicBlock((conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=512, out_features=1000, bias=True)
)
http://www.yayakq.cn/news/367372/

相关文章:

  • 宜宾建设局网站网站建设的进度
  • 李洋网络做网站软件开发是学什么的
  • 建筑网站官网权威的网页设计公司
  • 海报生成器贵港seo
  • c++语言网站建设媒体广告
  • 湛江市研发网站建设芜湖做网站设计的公司
  • 企业做网站报价网站建设中服务器的搭建方式
  • 网站如何做标题优化网站建设商城 买模板
  • 上海大规模网站建设平台wordpress树形主题
  • 做网站模板用什么软件郴州新网官网
  • 北京网站制作是什么药学专业网站
  • 四川营销网站建设开发app需要什么设备
  • 上海优化网站seo公司商城网站建设企业
  • 高要区公路建设规划局网站张店网站建设定制
  • 模板网站如何引擎收录网站方案设计与论证
  • 辽阳市建设行业培训中心网站WordPress 手机版跳转
  • 六安网站建设优化金昌大型网站建设费用
  • c2c网站开发毕业设计wordpress友言
  • 在360做网站和百度做网站的区别潍坊建设部门管理网站
  • 企业网站首页设计建设官方网站公司
  • 南京凯盛建设集团官方网站软件外包服务内容
  • 北京欢迎你网站建设一个app下载免费下载安装
  • cms 网站建设crm系统管理软件
  • html网站源代码新型h5网站建设
  • 网站用什么格式做徐州住房和城乡建设部网站
  • 大学毕业网站设计代做北京市招投标公共服务平台官网
  • 郑州网站优化推广培训wordpress修改邮件内容
  • 珠海网站制作价格广州有做网站的公司吗
  • 广州网站建设说说外链的建设最新国际形势最新消息
  • 电子商务网站加密ps如何做网站导航图