当前位置: 首页 > news >正文

网站建设报价比较外贸订单怎么找

网站建设报价比较,外贸订单怎么找,教育机构网站建设,长沙seo男团一、线性回归分析 1、lm()函数 lm()函数是用于拟合线性模型(Linear Models)的主要函数。线性模型是一种统计方法,用于描述一个或多个自变量(预测变量、解释变量)与因变量(响应变量)之间的关系…

一、线性回归分析

1、lm()函数

lm()函数是用于拟合线性模型(Linear Models)的主要函数。线性模型是一种统计方法,用于描述一个或多个自变量(预测变量、解释变量)与因变量(响应变量)之间的关系。它可以处理简单的线性回归、多元线性回归以及带有分类预测变量的回归(通过创建虚拟变量或指示变量)。

基本格式:

lm(formula, data, subset, weights, ...)

  1. formula:描述因变量与自变量间关系的符号表达式。
  2. data:包含公式中所有变量的数据框(data frame)或列表(list)。若未明确指定,R 将在全局环境中搜索变量。
  3. subset(子集):逻辑向量或表达式,用于从数据中筛选用于模型拟合的观测值。默认为NULL,即使用全部数据。
  4. weights(权重):可选参数,用于为各观测值分配权重。默认为 NULL,即所有观测值权重相等。
  5. ...(其他参数):lm函数还接受其他多个参数,这些参数通常与模型的拟合与优化相关。例如,na.action参数可用于定义缺失值(NA)的处理方式,method参数可用于指定拟合方法(尽管对于普通线性模型,此参数通常设为默认值 "qr" 即可)。

2、简单线性回归

用R语言内置的cars数据集做演示,此数据集记录了汽车的速度(speed)和停车距离(dist),一共50条记录。

head(cars, n=5)
# 简单线性模型拟合
fit <- lm(dist ~ speed, data=cars)
# 拟合结果的详细信息
summary(fit)

# 模型参数
coeffcients(fit)
# 回归系数置信区间
confint(fit)
# 模型预测值
fitted(fit)
# 模型的残差
residuals(fit)

 从上面结果可知,拟合得到的模型参数的截距项为-17.5791,回归系数是3.9324,调整的多重R2(Adjusted R-squared)为0.6438,说明该模型能解释停车距离为64.38%的变异。方差分析结果也显示整个模型是显著的(p=1.49e-12 < 0.05)。因为简单线性回归只有一个自变量,所以模型的F检验和回归系数的t检验的结果是相同的。

plot(cars)
lines(x=cars$speed, y=fitted(fit), col="red")

3、多重线性回归

多重线性回归包含多个自变量。

下面使用R语言内置的数据集mtcars进行演示,此数据集包含了32种汽车的11种基本性能数据。通过汽车排量(disp),总功率(hp),后桥速比(drat)和车重(wt)四个变量来预测汽车油耗指数(mpg),mpg越大,油耗越低。

head(mtcars, n=5)
fit <- lm(mpg ~ disp + hp + drat + wt, data=mtcars)
summary(fit)

从以上结果可知:汽车排量和后桥速比与汽车油耗指数正相关,而汽车总功率和车重于汽车油耗指数负相关。在多重线性回归中,回归系数表示当1个自变量每增加1个单位,且其它自变量不变时,因变量所增加或减少的数量,例如,车重的回归系数为-3.479668,表示当排量、总功率和后桥速比不变时,车重每增加1个单位,汽车油耗指数将下降约3.48个单位。方差分析结果表明,整个回归模型是显著的(F=34.82,p=2.704e-10<0.01)。在截距项和回归系数显著性检验中,截距项(Intercept)、总功率(hp)和车重(wt)的回归系数显著(Pr<0.05) ,排量(disp)和后桥速比(drat)的回归系数不显著。整个模型能解释油耗指数81.36%的变异。

4、plot()函数

R语言中有一个实用的基础函数plot(),可以生成四种回归模型诊断图:残差图、正态QQ图、尺度-位置图和残差-杠杆图。

fit <- lm(mpg ~ disp+hp+drat+wt, data=mtcars)
# 将四种形态组合成一张图
par(mfrow=c(2,2))
plot(fit)

5、多重共线性

 如果自变量之间为多重共线性,即自变量之间有较强的相关性,将使回归系数的估计产生非常严重的误差,以至于估计出来的回归系数没有任何意义。如果要判断回归模型是否存在严重的多重共线性,可以使用方差膨胀因子。

library(car)
fit <- lm(mpg ~ disp+hp+drat+wt, data=mtcars)
vif <- vif(fit)
vif
# 查看哪些变量膨胀因子大于10
vif > 10
# 查看哪些变量膨胀因子的开方大于2
sqrt(vif) > 2

从上面结果可知,如果以方差膨胀因子是否大于10来作为判断准则,那么该回归模型中不存在严重的多重共线性;如果以方差膨胀因子的开方大于2为判断准则,那么该回归模型中存在disp和wt两个变量时,存在严重的多重共线性。

二、判别分析

判别分析就是利用若干个特征来表征事物,通过对这些特征的定量分析,最终将事物判定为某一已知总体。

常见的判别分析有如下三种。

1、距离判别

7134距离判别(Distance-based Discriminant Analysis)对空间中的某个点进行类属判别,最容易想到的是使用该点与各已知总体的距离远近来进行判别。

以下是如何在R中实现基于距离的分类的基本步骤:

1.1 准备数据

确保你的数据集已经加载并准备好。数据集应该包含特征变量(用于计算距离)和目标变量(类别标签)。

1.2 计算类别中心

对于每个类别,计算其所有样本的均值(或其他代表点),这将作为该类别的中心。

1.3 计算距离

对于新的未知样本,计算它到每个类别中心的距离。可以使用欧氏距离、马氏距离等。

1.4 分类

将样本分类到距离最小的类别中。

1.5 评估模型

使用测试集评估模型的性能,通常通过混淆矩阵、准确率等指标。

1.6 示例

使用R语言中内置的iris数据集进行演示,此数据集包含了3类鸢尾花(setosa、versicolor和virginica)的4个特征,从150条记录。使用欧氏距离进行基于距离的分类:

# 先查看数据信息
head(iris)
str(iris)
library(iris)
describe(iris)

# 从iris数据集中随机抽取3种鸢尾花的数据各一条作为测试集,剩余的作为训练集
# 设定随机种子
set.seed(1234)
# 随机抽取测试集
data <- cbind(rownames = rownames(iris),iris) # 将行名添加为数据框的一列
library(dplyr)
test_data <- data %>% group_by(Species) %>% sample_n(1)
# 剩余数据作为训练集
train_data <- filter(data, !(rownames %in% test_data$rownames))
test_data <- test_data[,-1] %>% ungroup()
test_data
train_data <- train_data[,-1] %>% ungroup()
head(train_data,n=10)

 

# 查看数据集
head(iris, n=5)
# 加载数据集
data(iris)# 拆分数据集为训练集和测试集
set.seed(12345)
index <- sample(1:nrow(iris), 0.7 * nrow(iris))
train_data <- iris[index, -5]  # 训练集,去掉最后的类别标签用于计算中心
train_labels <- iris[index, 5]test_data <- iris[-index, -5]  # 测试集
test_labels <- iris[-index, 5]# 计算类别中心
centers <- aggregate(train_data, by=list(Species=train_labels), FUN=mean)# 定义一个函数来计算欧氏距离
euclidean_distance <- function(x, y) {sqrt(sum((x - y)^2))
}# 对测试集中的每个样本进行分类
predictions <- apply(test_data, 1, function(row) {distances <- sapply(split(centers[, -1], centers$Species), function(center) {euclidean_distance(row, center)})# 返回距离最小的类别names(which.min(distances))
})# 评估模型性能
conf_matrix <- table(Predicted=predictions, Actual=test_labels)
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix)
print(conf_matrix)
print(paste("Accuracy:", round(accuracy, 2)))

 

2、Fisher判别

Fisher判别分析(Fisher Discriminant Analysis, FDA),也被称为线性判别分析(Linear Discriminant Analysis, LDA)在统计模式识别领域有着广泛的应用。尽管“Fisher判别分析”和“线性判别分析”在术语上存在些许差异,但在大多数情况下,它们指的是同一种方法。FDA/LDA的目标是找到一个线性组合(或投影)方向,使得在这个方向上,不同类别之间的样本投影点尽可能分开,而同一类别内的样本投影点尽可能紧凑。

http://www.yayakq.cn/news/741261/

相关文章:

  • 企业网站需要哪些模块适合html初学者做的网站
  • 微网站 功能js动效网站
  • 阿里云做的网站空间wordpress自适应视频
  • 自己做的网站打不开怎么回事大型网站建站公司
  • 在线logo设计网站浦口区网站建设售后保障
  • 一键生成个人网站seo搜索引擎优化论文
  • 漳州网站设计制作东莞 网站 建设 物流
  • 可以用腾讯企业邮箱域名做网站66建筑网
  • 网站自动跳转wordpress 图片延迟
  • 焦作市住房和城乡建设局网站网页升级访问中新每天正常更新中在线观看
  • 济南建设项目竣工验收公示网站温州网站制作建设
  • 上海html5网站制作电商网站的内容设计
  • 网站谷歌排名网站建设需要注意什么
  • 专题网站建设方案wordpress安装后台
  • 网站做短视频业务许可凡科建设网站的步骤
  • 广州的房地产网站建设公共资源交易中心总结
  • 图片网站怎么建设小程序和app的开发成本对比
  • 网站服务器在本地是指中国网络安全官网
  • 石家庄哪里有做外贸网站的公司温州网站推广驭明
  • 做外汇网站代理管理公司网站设计
  • 怎样把自己做的网站上传精品网站导航 做最好的导航
  • 怎么做网站反向链接英国免费做网站
  • 外贸网站服务商原始传奇经典复古
  • 视频网站内容规划wordpress建局域网
  • 想学习做网站齐齐哈尔网站设计
  • 在微信怎样搞做微视频网站北京百度seo工作室
  • 集约化网站群建设方案织梦怎么做淘客网站
  • 陕西网站制作定制用php做网站要用构架吗
  • 栾城网站建设wordpress出现百度抓取404页面
  • 哪些网站可以做电脑画画赚钱酒店网站的设计摘要