当前位置: 首页 > news >正文

福州有名的公司网站设计网站推广模板

福州有名的公司网站设计,网站推广模板,html怎么添加图片,wordpress js版本号【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用 本次修炼方法请往下查看 🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地! 🎇 相关内容文档获取 微…

【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 一、基本介绍
  • 💡 二、使用方法
    • 常用函数
    • 创建DataFrame
  • 🔍 三、进阶用法
  • 🔍 四、注意事项
  • 🔧 五、总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 一、基本介绍

  Pandas中的统计函数是数据分析中不可或缺的工具,它们可以帮助我们快速计算数据集中的描述性统计数据,如均值、中位数、标准差等,可以快速的对数据进行分布分析、异常值分析、数据类型等基本数据统计分析。

💡 二、使用方法

常用函数

  Pandas 提供了很多统计函数,以下是一些常用的:

  • mean(): 计算均值
  • median(): 计算中位数
  • std(): 计算标准差
  • var(): 计算方差
  • sum(): 计算总和
  • min(): 找到最小值
  • max(): 找到最大值
  • count(): 数值的个数
  • info(): 总体数据分布

创建DataFrame

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [24, 27, 22, 32, 29],'Income': [50000, 54000, 35000, 62000, 58000]
}
df = pd.DataFrame(data)
# 计算年龄的均值
mean_age = df['Age'].mean()
print("Mean Age:", mean_age)# 计算收入的中位数
median_income = df['Income'].median()
print("Median Income:", median_income)# 计算年龄的标准差
std_age = df['Age'].std()
print("Standard Deviation of Age:", std_age)# 计算年龄的方差
var_age = df['Age'].var()
print("Variance of Age:", var_age)# 计算所有人的总收入
total_income = df['Income'].sum()
print("Total Income:", total_income)# 找到年龄的最大值和最小值
max_age = df['Age'].max()
min_age = df['Age'].min()
print("Max Age:", max_age, "Min Age:", min_age)

  

🔍 三、进阶用法

   当我们想要对整体的数据进行分布的查看时,需要查看各个列是否有缺失值,以及每个列的数据格式是什么样子时,这个时候需要可以通过info函数来获取相关的结果,具体的代码如下所示:

    print(df.info())<class 'pandas.core.frame.DataFrame'>RangeIndex: 5 entries, 0 to 4Data columns (total 3 columns):#   Column  Non-Null Count  Dtype ---  ------  --------------  ----- 0   Name    5 non-null      object1   Age     5 non-null      int64 2   Income  5 non-null      int64 dtypes: int64(2), object(1)memory usage: 248.0+ bytesNone

  从上面的输出结果可以看出来,每个列是否有缺失值,以及每个列中的数据格式是什么样子的。
  

🔍 四、注意事项

  对上述的各个统计函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 确保在使用统计函数之前,数据是干净且适合进行统计分析的。
  • 某些统计函数,如 mean() 和 median(),可能会受到异常值的影响。在这种情况下,可能需要先进行数据清洗或转换。
  • 当使用 std() 和 var() 时,要注意它们计算的是样本标准差和方差还是总体标准差和方差。默认情况下,Pandas 计算的是总体标准差和方差(不使用 Bessel’s correction)。

🔧 五、总结

  Pandas 的统计函数是数据分析中的强大工具,它们可以帮助我们快速获取数据的关键信息。通过上述示例,我们可以看到如何使用这些函数来分析数据集。然而,为了得到准确的分析结果,我们需要确保数据的质量,并注意函数的使用条件。希望这篇博客能帮助你更好地利用 Pandas 进行数据分析。

http://www.yayakq.cn/news/532387/

相关文章:

  • 黑龙江网站设计公司单页站如何做网站seo优化
  • 能免费做微信群推广的网站公司网站设计有哪些使用技巧呢
  • 外贸网站开发公司微信开发者工具官网下载
  • 免费虚拟空间网站黄岐网站建设
  • 凡科能上传自己做的网站做旅游网站毕设任务书
  • 网站建设 公司 常见问题金华城乡建设网站
  • 机关网站机制建设情况网站版本功能列表
  • 海淀网站建设wzjs51网站交互性
  • 黄石建设信息网站开店加盟代理
  • 移动网站建设的前景百度手机助手下载正版
  • 怎样做网站的优化排名可以做游戏广告的网站
  • 兰州城乡建设局网站应用frontpage制作教学网站
  • 对网站建设过程招聘网58同城求职信息
  • 网站ueo设计类专业哪个专科学校好
  • 个人网站建设论文绪论网站建设与管理课程总结
  • 网站建设销售该学的建筑设计专业推荐网站
  • 网站域名使用方法vs网站开发需要的组件
  • 网站建设和平面设计公司注册资金需要多少
  • 如何维护自己的网站wordpress 分享主题
  • 茂名网站开发公司推荐工作总结模板
  • 广州化妆品网站设计一起做彩票网站的人
  • 网站icp备案咋做北京网站推广营销策划
  • 网站demo要几个人做床上用品网站源码
  • 网站开发文件综述wordpress title tag
  • 做花茶网站解说唐四薪php网站开发答案
  • wordpress搭建下载站点成都市城乡建设管理局网站
  • qt 网站开发团购网站功能模块
  • 域名里可以建网站情侣建站的wordpress主题
  • 网站建设排名的公司哪家好云南人社
  • 婚纱摄影网站怎么建设维护一个网站一年多少钱