当前位置: 首页 > news >正文

织梦 网站版权信息山东省住房和城乡建设局网站首页

织梦 网站版权信息,山东省住房和城乡建设局网站首页,电商营销策略,WordPress 古腾堡开发目录 一、AVL树的定义二、AVL树的作用三、AVL树的插入操作插入——平衡因子的更新插入——左单旋插入——右单旋插入——左右双旋插入——右左双旋 四、ALVL树的验证五、AVL树的性能 一、AVL树的定义 AVL树,全称 平衡二叉搜索(排序)树。 二…

目录

  • 一、AVL树的定义
  • 二、AVL树的作用
  • 三、AVL树的插入操作
    • 插入——平衡因子的更新
    • 插入——左单旋
    • 插入——右单旋
    • 插入——左右双旋
    • 插入——右左双旋
  • 四、ALVL树的验证
  • 五、AVL树的性能

一、AVL树的定义

AVL树,全称 平衡二叉搜索(排序)树

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

平衡因子(Balance Factor,简写为bf)
平衡因子(bf):结点的左子树的深度减去右子树的深度。也可以是右子树的深度减去左子树的深度。看个人实现而异。

即: 结点的平衡因子 = 左子树的高度 - 右子树的高度。
或者 节点的平衡因子 = 右子树的高度 - 左子树的高度。

AVL树本质上是一颗二叉查找树,但是它又具有以下特点:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

这就是一颗AVL树
在这里插入图片描述

二、AVL树的作用

有一颗二叉树,他有n个节点,如果他是一颗二叉搜索树,他形状多样,可能会形成单枝树,高度为n,那么在这颗搜索树中查找元素的最坏时间复杂度为O(n),最好时间复杂度是O( l o g 2 n log_2 n log2n)。
如果他是一颗AVL树,他的高度稳定为 l o g 2 n log_2 n log2n,查找元素的时间复杂度为O( l o g 2 n log_2 n log2n)。在这里插入图片描述
由上图可知,同样的结点,由于插入方式不同导致树的高度也有所不同。特别是在带插入结点个数很多且正序的情况下,会导致二叉树的高度是O(N),而AVL树就不会出现这种情况,树的高度始终是O(lgN).高度越小,对树的一些基本操作的时间复杂度就会越小。这也就是我们引入AVL树的原因。

三、AVL树的插入操作

插入——平衡因子的更新

在插入一个元素的时候,必然会引起平衡因子的变化,所以我们需要在插入的时候把平衡因子同时更新,在平衡因子大于1或者小于-1时,我们则需要进行旋转操作,进行调整,使平衡因子再次正常,从而保证这颗二叉树一直是一颗AVL树。

使用平衡因子计算: 右子树高度 - 左子树高度

情况一:
在这里插入图片描述
在插入元素后,需要更新父节点的平衡因子,在父节点的左子树插入元素,父节点的平衡因子-1,在父节点的左子树插入元素,父节点的平衡因子+1,如果父节点的平衡因子更新过后变为1或者-1,则需继续往上更新至根节点,因为1或者-1表示该节点的高度发生改变,需往上更新。

情况2:
在这里插入图片描述
在插入元素后,需要更新父节点的平衡因子,在父节点的左子树插入元素,父节点的平衡因子-1,在父节点的左子树插入元素,父节点的平衡因子+1,如果父节点的平衡因子更新过后变为0,则不需要继续向上更新,因为变为0只能说明该树高度没有变化,只是相对于原来变得平衡。

如果在更新平衡因子后,平衡因子不在(-1/0/1)范围时,则需旋转操作,下面讲解如何进行旋转操作

由于插入需要旋转的情况较多,大致可以分为四大类

插入——左单旋

动图演示
请添加图片描述

情况一
右子树高时,在右子树的右侧插入元素,此时需要左单旋这里是引用

插入——右单旋

动图演示
请添加图片描述

情况二、
左子树较高时,在左子树的左侧插入元素,此时需要右单旋这里是引用

插入——左右双旋

情况三、左子树较高时,在左子树的右侧插入元素,此时需要左右双旋,即:先对30进行左单旋,然后再对90进行右单旋这里是引用

插入——右左双旋

情况四、右子树较高时,在右子树的左侧插入元素,此时需要右左双旋,即:先对90进行右单旋,然后再对30进行左单旋
在这里插入图片描述

四、ALVL树的验证

int _Height(Node* root)
{//用来计算二叉树的高度if (root == NULL)return 0;int leftH = _Height(root->_left);int rightH = _Height(root->_right);return leftH > rightH ? leftH + 1 : rightH + 1;
}bool _IsBalance(Node* root)
{if (root == NULL)return true;int leftH = _Height(root->_left);int rightH = _Height(root->_right);//检查平衡因子if (rightH - leftH != root->_bf){cout << root->_kv.first << "节点平衡因子异常" << endl;return false;}//通过计算左右子树的高度差判断这颗二叉树是否为AVL树return abs(leftH - rightH) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);//检查高度差要检查二叉树中所有节点的左右子树的高度差
}bool IsBalance()
{return _IsBalance(_root);
}

五、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 n log_2 n log2n

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

http://www.yayakq.cn/news/162384/

相关文章:

  • 网站建设规划大纲给传销做网站什么罪
  • 大学建设网站的意义俄罗斯乌克兰战争
  • 古田住房与建设局网站只想怎样建设自己的销售网站
  • 东莞建设局网站美工模板网站
  • 东莞网站建设 钢结构app和网站开发区别
  • 做雇主品牌的网站wordpress主题 二次元
  • 谷歌网站开发客户东莞横沥理工学校
  • 米拓建站外贸企业网站建设公司
  • 重庆网站建设公司名单前台登录 wordpress
  • 效果图网站无缝连接隐形眼镜网站开发的经济效益
  • 关于企业网站建设的提案网站制作 太原
  • php医疗网站咨询源码百度公司有哪些部门
  • 村级门户网站建设门户网站建设注意问题
  • wordpress 视频列表网站产品优化
  • 商城网站建设最新报价重庆商城网站建设
  • 查找做影评的工作网站网站开发计划时间
  • 免费微网站系统配资网站建设是什么
  • 儋州网站设计公司wordpress火车头发布模块接口
  • 西安网站seo技术昆明seo建站
  • 网站可以放多少视频番禺网站建设哪个好
  • 北京企业网站建设多少钱营销型网站建设模板下载
  • 青岛网站建设团队jsp鲜花网站开发源代码
  • 广州远洋建设实业公司网站福州网站建设电话
  • wordpress临时关站wordpress 媒体库 删除
  • 网站建设公司dz000设计网址有哪些
  • 厦门网站建设一般多少钱大连高端模板建站
  • 山东省建设执业师之家官方网站网站建设与运营推广的回报材料
  • 宿迁环保局网站建设局游戏道具网站开发
  • 成都网站建设v产品建站工具
  • 网站分成推广怎么做溧阳市建设局网站