当前位置: 首页 > news >正文

wiki网站开发工具wordpress主题开发培训

wiki网站开发工具,wordpress主题开发培训,沈阳网站建设沈阳,wordpress 文章 两边🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: X-Former: Unifying Contr…

🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题: X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs
作者: Sirnam Swetha, Jinyu Yang, Tal Neiman, Mamshad Nayeem Rizve, Son Tran, Benjamin Yao, Trishul Chilimbi, Mubarak Shah
发表: ECCV 2024
arXiv: https://arxiv.org/abs/2407.13851

基本信息

摘要

近期在多模态大型语言模型(MLLMs)方面的进步,通过将视觉感知能力整合到大型语言模型(LLMs)中,已经彻底改变了视觉-语言理解领域。

该领域的流行趋势涉及使用来自视觉-语言对比学习(CL)的视觉编码器,擅长捕捉整体表示,但在捕捉详细局部模式方面存在困难。

在本工作中,我们通过结合通过掩码图像建模(MIM)获得的高频和详细视觉表示与由CL捕获的语义丰富的低频表示,来增强MLLMs的视觉表示。为了实现这一目标,我们引入了X-Former,这是一个轻量级的Transformer模块,通过创新交互机制利用CL和MIM的互补优势。

具体来说,X-Former首先从两个冻结的视觉编码器,即基于CL的CLIP-ViT和基于MIM的MAEViT,启动视觉-语言表示学习和多模态到多模态生成学习。它进一步从冻结的LLM启动视觉到语言的生成学习,以确保X-Former的视觉特征可以被LLM解释。

为了证明我们方法的有效性,我们在需要详细视觉理解的任务上对其性能进行了评估。广泛的评估表明,X-Former在涉及GQA数据集中结构和语义类别的视觉推理任务中表现出色。对细粒度视觉感知基准的评估进一步证实了其在视觉理解方面的优越能力。

主要贡献

  • 提出利用CL和MIM中的视觉编码器,从冻结的图像编码器中捕捉全局和局部视觉表示,以提升视觉语言理解能力。
  • 提出具有双重交叉注意力的X-Former,用于通过图像-文本对启动多模态到多模态的生成学习,完全无需使用精心挑选或视觉指令数据。

方法

预备知识

CLIP-ViT与MAE-ViT的训练目标使得其关注点有所不同。CLIP-ViT更多关注低频信号和全局视觉表示,而MAE-ViT在理解详细视觉特征方面更加出色。

原生的Q-Former仅采用CLIP-ViT特征,尽管其在VQA和图像描述等下游任务上表现出色,但在详细视觉特征理解方面遇到了挑战。

将CLIP-ViT特征与MAE-ViT特征融合

BLIP2、BLIP2+Concatenation、BLIP2+Early Cross-Attention以及我们的方法在VQAv2(a)、GQA(b)和OKVQA(c)数据集上的性能比较

如何融合CLIP-ViT特征和MAE-ViT特征成为了本文的研究重点。

X-Former

Pre-Training

X-Former Pre-Training

  • CLIP-ViT: pre-trained ViT-G model from EVA-CLIP
  • MAE-ViT: pre-trained ViT-H model

X-Former通过优化重建、ITC、ITM和ITG损失来学习提取局部和全局表示。

  • 🔥 X-Former
  • ❄️ CLIP Image Encoder、MAE Image Encoder、MAE Image Decoder
LLM Alignment

X-Former LLM Alignment

  • LLM Decoder: OPT model

将X-Former的特征与冻结的LLM对齐。

  • 🔥 X-Former、FC
  • ❄️ CLIP Image Encoder、MAE Image Encoder、LLM Decoder

实验

主实验

VQAv2数据集上的零样本视觉问答结果

VQAv2数据集上的零样本视觉问答结果。

GQA和OKVQA数据集上零样本视觉问答结果

GQA和OKVQA数据集上零样本视觉问答结果。

GQA中的详细比较

GQA中的详细比较。

MLLMs在物体计数(OC)和多类识别(MCI)任务上的零样本细粒度视觉感知评估

MLLMs在物体计数(OC)和多类识别(MCI)任务上的零样本细粒度视觉感知评估。

COCO与NoCaps上的无微调结果零样本图像描述结果

COCO与NoCaps上的无微调结果零样本图像描述结果。

消融实验

消融实验

Table 5: 对MAE-ViT特征的消融。将MAE-ViT特征替换为CLIP-ViT的浅层特征。
Table 6: 重建损失的消融。

总结

在这篇论文中,我们介绍了X-Former,这是一种新型架构,旨在通过整合预训练的MAE和CLIP视觉编码器来增强多模态语言模型(MLLMs)的视觉表示。

我们的动机源于以下几点观察:

  1. 现有的MLLMs主要依赖于CLIP-ViT,但往往无法捕捉到细粒度的视觉信号;
  2. 我们的实证研究表明,简单地将CLIP-ViT和MAE-ViT相结合并不一定能带来性能提升;
  3. MLLMs的有效性高度依赖于大规模图像-文本对进行预训练和精心策划的指令调整数据集进行微调。

X-Former通过双重交叉注意力机制有效地整合了CLIP-ViT和MAE-ViT,同时保持计算需求可控。我们的方法即插即用,可以应用于其他模型。

我们的实验结果明确表明,X-Former在各种需要稳健视觉理解的视觉推理任务中超越了BLIP-2。值得注意的是,这些优越的结果仅使用了十分之一的图像-文本对数据集,且无需任何指令调整数据集。

http://www.yayakq.cn/news/791144/

相关文章:

  • 广东东莞免费网站制作公司硬件开发平台是指什么
  • 网站 接入微信做网站怎么发布
  • 网站背景色代码博客网站开发利用数据库
  • 好看的网站源码网站开发gif图太多耗资源吗
  • 珠海建设网站公司哪家好长沙市停课最新消息
  • 建设壁纸网站的目的广西住房和城乡建设部网站
  • 简洁的网站设计益阳网站开发公司
  • 建设部职称评审的网站北控京奥建设有限公司网站
  • 西安设计网站公司注册资金100万的公司要多少钱
  • 互联网门户网站有哪些南京最新情况最新消息今天
  • 门业东莞网站建设技术支持wordpress修改管理员
  • 笔记本做系统哪个网站好兴仁企业建站公司
  • 电子书新手学做网站iis下安装wordpress
  • 如何建设公司网站知乎企业管理咨询公司前景
  • 免费自助设计网站怎么加快登录网站速度
  • 网站维护推广怎么做电子商务网站推广策划方案
  • 网站建设网络推广最低价格计算机网站开发方向
  • 成都门户网站有哪些网页设计入门首先要学什么
  • 陕西建设官方网站企业网站备案那么麻烦吗
  • 想做机械加工和橡胶生意怎么做网站小程序怎样制作
  • 网页设计与网站建设在线第二章建筑招聘平台
  • 创意设计网站京网站制作公司
  • 上海嘉定区网站建设汕头百度关键词搜索
  • 大连建设项目关键词优化价格
  • 视频投票网站怎么做上海知名网站建
  • 网站开发部职责公司网站程序
  • 农村做网站赚钱百度app下载安装官方免费下载
  • 广东微信网站建设价格科技公司网站设计方案
  • 找网站建设公司重庆永川网站建设价格
  • 外国人的做视频网站吗网站建设与维护可行性报告