电商网站建设与运营成本pc 移动端网站建设
目录
- CVPR 2023
 - 图像超分
 - 任意尺度超分
 - 盲超分
 
- 视频超分
 - 特殊场景
 
- 总结
 - 参考资料
 
CVPR 2023
官网链接:https://cvpr2023.thecvf.com/
 会议时间:2023年6月18日-6月22日,加拿大温哥华
 CVPR 2023统计数据:
- 提交:9155篇论文
 - 接受:2359篇论文(25.8%的接受率)
 - 亮点:235篇论文(占录取论文的10%,占提交论文的2.6%)
 - 获奖候选人:12篇论文(占录取论文的0.51%,占提交论文的0.13%)
 
现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。
图像超分
- N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution 
- Paper: https://arxiv.org/abs/2211.11436
 - Code: https://github.com/rami0205/NGramSwin
 - Keywords: Transformer, Lightweight
 
 - Perception-Oriented Single Image Super-Resolution using Optimal Objective Estimation 
- Paper: https://arxiv.org/abs/2211.13676
 - Code: https://github.com/seungho-snu/SROOE
 
 - Activating More Pixels in Image Super-Resolution Transformer 
- Paper: https://arxiv.org/abs/2205.04437
 - Code: https://github.com/XPixelGroup/HAT
 - Keywords: Transformer
 
 - Burstormer: Burst Image Restoration and Enhancement Transformer 
- Paper: https://arxiv.org/abs/2304.01194
 - Code: http://github.com/akshaydudhane16/Burstormer
 - Keywords: Burst super-resolution
 
 - Generative Diffusion Prior for Unified Image Restoration and Enhancement 
- Paper: https://arxiv.org/abs/2304.01247
 - Keywords: Unified image recovery
 
 - Tunable Convolutions with Parametric Multi-Loss Optimization 
- Paper: https://arxiv.org/abs/2304.00898
 
 - Omni Aggregation Networks for Lightweight Image Super-Resolution 
- Paper: https://arxiv.org/abs/2304.10244
 - Code: https://github.com/Francis0625/Omni-SR
 - Keywords: Lightweight
 
 - CABM: Content-Aware Bit Mapping for Single Image Super-Resolution Network with Large Input 
- Paper: https://arxiv.org/abs/2304.06454
 - Keywords: Large Input
 
 - Image Super-Resolution Using T-Tetromino Pixels 
- Paper: https://arxiv.org/abs/2111.09013
 
 - Spectral Bayesian Uncertainty for Image Super-resolution 
- Paper:
 
 - Memory-friendly Scalable Super-resolution via Rewinding Lottery Ticket Hypothesis 
- Paper:
 - News: PAMI中心8项研究成果被计算机视觉顶级会议CVPR2023录用
 - Keywords: Lightweight
 
 
任意尺度超分
- Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution 
- Paper: https://arxiv.org/abs/2303.05156
 - Keywords: Arbitrary-Scale, Flow
 
 - Super-Resolution Neural Operator 
- Paper: https://arxiv.org/abs/2303.02584
 - Code: https://github.com/2y7c3/Super-Resolution-Neural-Operator
 - Keywords: Arbitrary-Scale
 
 - OPE-SR: Orthogonal Position Encoding for Designing a Parameter-free Upsampling Module in Arbitrary-scale Image Super-Resolution 
- Paper: https://arxiv.org/abs/2303.01091
 - Keywords: Arbitrary-scale
 
 - Human Guided Ground-truth Generation for Realistic Image Super-resolution 
- Paper: https://arxiv.org/abs/2303.13069
 - Code: https://github.com/ChrisDud0257/HGGT
 - Keywords: RealSR
 
 - Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution 
- Paper: https://arxiv.org/abs/2303.16513
 - Code: https://github.com/jaroslaw1007/CLIT
 
 - Implicit Diffusion Models for Continuous Super-Resolution 
- Paper: https://arxiv.org/abs/2303.16491
 - Code: https://github.com/ree1s/idm
 
 - CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution 
- Paper: https://arxiv.org/abs/2212.04362
 - Code: https://github.com/caojiezhang/CiaoSR
 - Keywords: Attention, Implicit
 
 - Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit 
- Paper:
 - Code: https://github.com/neuralchen/EQSR
 
 
盲超分
- Better “CMOS” Produces Clearer Images: Learning Space-Variant Blur Estimation for Blind Image Super-Resolution 
- Paper: https://arxiv.org/abs/2304.03542
 
 - Learning Generative Structure Prior for Blind Text Image Super-resolution 
- Paper: https://arxiv.org/abs/2303.14726
 - Code: https://github.com/csxmli2016/MARCONet
 
 
视频超分
- Learning Spatial-Temporal Implicit Neural Representations for Event-Guided Video Super-Resolution 
- Paper: https://arxiv.org/abs/2303.13767
 - Code: http://github.io/cvpr23/egvsr
 - Keywords: Implicit Neural Representations
 
 - Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting 
- Paper: https://arxiv.org/abs/2303.08331
 - Code: https://github.com/coulsonlee/STDO-CVPR2023.git
 
 - Consistent Direct Time-of-Flight Video Depth Super-Resolution 
- Paper: https://arxiv.org/abs/2211.08658
 - Keywords: dToF
 
 - Compression-Aware Video Super-Resolution 
- Paper:
 
 - Structured Sparsity Learning for Efficient Video Super-Resolution 
- Paper: https://arxiv.org/abs/2206.07687
 - Code: https://github.com/Zj-BinXia/SSL
 
 
特殊场景
- Denoising Diffusion Probabilistic Models for Robust Image Super-Resolution in the Wild 
- Paper: https://arxiv.org/abs/2302.07864
 - Keywords: Diffusion, Wild
 
 - Learning to Zoom and Unzoom 
- Paper: https://arxiv.org/abs/2303.15390
 - Code: https://tchittesh.github.io/lzu/
 - Keywords: Image Resampling
 
 - Toward Stable, Interpretable, and Lightweight Hyperspectral Super-resolution 
- Code: https://github.com/WenjinGuo/DAEM
 - Keywords: Hyperspectral
 
 - OSRT: Omnidirectional Image Super-Resolution with Distortion-aware Transformer 
- Paper: https://arxiv.org/abs/2302.03453
 - Code: https://github.com/Fanghua-Yu/OSRT
 - Keywords: Omnidirectional Image
 
 - Cross-Guided Optimization of Radiance Fields with Multi-View Image Super-Resolution for High-Resolution Novel View Synthesis 
- Paper:
 
 - Guided Depth Super-Resolution by Deep Anisotropic Diffusion 
- Paper: https://arxiv.org/abs/2211.11592
 - Code: https://github.com/prs-eth/Diffusion-Super-Resolution
 - Keywords: Depth image, Diffusion
 
 - CutMIB: Boosting Light Field Super-Resolution via Multi-View Image Blending 
- Paper:
 - Keywords: Light Field
 - Author: http://staff.ustc.edu.cn/~zwxiong/
 
 - B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution 
- Paper: https://ipl.dgist.ac.kr/BTC_cvpr23.pdf
 - Code: https://github.com/ByeongHyunPak/btc
 - Keywords: Screen Content Image
 
 - Spatial-Frequency Mutual Learning for Face Super-Resolution 
- Paper:
 - Keywords: Face
 
 - Equivalent Transformation and Dual Stream Network Construction for Mobile Image Super-Resolution 
- Paper:
 - Keywords: Mobile Image
 
 - Zero-Shot Dual-Lens Super-Resolution 
- Paper:
 - Code: https://github.com/XrKang/ZeDuSR
 - Keywords: Zero-Shot, Dual-Lens
 
 
总结
从本届接收的论文来看,超分方向上目前主要聚焦于任意尺度超分( Arbitrary-Scale SR)。
参考资料
- CVPR2023最新信息及论文下载(Papers/Codes/Project/PaperReading/Demos/直播分享/论文分享会等)
 - Awesome-Super-Resolution
 - CVPR 2023 Accepted Papers
 
