当前位置: 首页 > news >正文

建设机械网站案例vi设计的目的

建设机械网站案例,vi设计的目的,哪些网站是wordpress,域名怎么选才正确CNN 网络适用于图片识别,卷积神经网络主要用于图片的处理识别。卷积神经网络,包括一下几部分,输入层、卷积层、池化层、全链接层和输出层。 使用 CIFAR-10 进行训练, CIFAR-10 中图片尺寸为 32 * 32。卷积层通过卷积核移动进行计…

CNN 网络适用于图片识别,卷积神经网络主要用于图片的处理识别。卷积神经网络,包括一下几部分,输入层、卷积层、池化层、全链接层和输出层。
在这里插入图片描述
使用 CIFAR-10 进行训练, CIFAR-10 中图片尺寸为 32 * 32。卷积层通过卷积核移动进行计算最终生成特征图。

在这里插入图片描述
通过池化层进行降维度
在这里插入图片描述

卷积网络结构从输入到输出, 3* 32*32 --> 10:

类型WeightBIAS
卷积(3, 12, 5)(12, 3, 5, 5)12
卷积(12, 12, 5)(12, 12, 5, 5)12
Norm1212
卷积(12, 24, 5)(24, 12, 5, 5)24
卷积(24 24, 5)(24, 24, 5, 5)24
Norm2424
Linear(10, 2400)10

训练分类模型

准备数据
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader# Loading and normalizing the data.
# Define transformations for the training and test sets
transformations = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# CIFAR10 dataset consists of 50K training images. We define the batch size of 10 to load 5,000 batches of images.
batch_size = 10
number_of_labels = 10 # Create an instance for training. 
# When we run this code for the first time, the CIFAR10 train dataset will be downloaded locally. 
train_set =CIFAR10(root="./data",train=True,transform=transformations,download=True)# Create a loader for the training set which will read the data within batch size and put into memory.
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
print("The number of images in a training set is: ", len(train_loader)*batch_size)# Create an instance for testing, note that train is set to False.
# When we run this code for the first time, the CIFAR10 test dataset will be downloaded locally. 
test_set = CIFAR10(root="./data", train=False, transform=transformations, download=True)# Create a loader for the test set which will read the data within batch size and put into memory. 
# Note that each shuffle is set to false for the test loader.
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)
print("The number of images in a test set is: ", len(test_loader)*batch_size)print("The number of batches per epoch is: ", len(train_loader))
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
创建网络
import torch
import torch.nn as nn
import torchvision
import torch.nn.functional as F# Define a convolution neural network
class Network(nn.Module):def __init__(self):super(Network, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=1)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=1)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=1)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*10*10, 10)def forward(self, input):output = F.relu(self.bn1(self.conv1(input)))      output = F.relu(self.bn2(self.conv2(output)))     output = self.pool(output)                        output = F.relu(self.bn4(self.conv4(output)))     output = F.relu(self.bn5(self.conv5(output)))     output = output.view(-1, 24*10*10)output = self.fc1(output)return output# Instantiate a neural network model 
model = Network()

定义损失函数

使用交叉熵函数作为损失函数,交叉熵分为两种

  • 二分类交叉熵函数
    在这里插入图片描述
  • 多分类交叉熵函数
    在这里插入图片描述
loss_fn = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001)
模型训练
from torch.autograd import Variable# Function to save the model
def saveModel():path = "./myFirstModel.pth"torch.save(model.state_dict(), path)# Function to test the model with the test dataset and print the accuracy for the test images
def testAccuracy():model.eval()accuracy = 0.0total = 0.0device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")with torch.no_grad():for data in test_loader:images, labels = data# run the model on the test set to predict labelsoutputs = model(images.to(device))# the label with the highest energy will be our prediction_, predicted = torch.max(outputs.data, 1)total += labels.size(0)accuracy += (predicted == labels.to(device)).sum().item()# compute the accuracy over all test imagesaccuracy = (100 * accuracy / total)return(accuracy)# Training function. We simply have to loop over our data iterator and feed the inputs to the network and optimize.
def train(num_epochs):best_accuracy = 0.0# Define your execution devicedevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("The model will be running on", device, "device")# Convert model parameters and buffers to CPU or Cudamodel.to(device)for epoch in range(num_epochs):  # loop over the dataset multiple timesrunning_loss = 0.0running_acc = 0.0for i, (images, labels) in enumerate(train_loader, 0):# get the inputsimages = Variable(images.to(device))labels = Variable(labels.to(device))# zero the parameter gradientsoptimizer.zero_grad()# predict classes using images from the training setoutputs = model(images)# compute the loss based on model output and real labelsloss = loss_fn(outputs, labels)# backpropagate the lossloss.backward()# adjust parameters based on the calculated gradientsoptimizer.step()# Let's print statistics for every 1,000 imagesrunning_loss += loss.item()     # extract the loss valueif i % 1000 == 999:    # print every 1000 (twice per epoch) print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 1000))# zero the lossrunning_loss = 0.0# Compute and print the average accuracy fo this epoch when tested over all 10000 test imagesaccuracy = testAccuracy()print('For epoch', epoch+1,'the test accuracy over the whole test set is %d %%' % (accuracy))# we want to save the model if the accuracy is the bestif accuracy > best_accuracy:saveModel()best_accuracy = accuracy
测试模型
import matplotlib.pyplot as plt
import numpy as np# Function to show the images
def imageshow(img):img = img / 2 + 0.5     # unnormalizenpimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))plt.show()# Function to test the model with a batch of images and show the labels predictions
def testBatch():# get batch of images from the test DataLoader  images, labels = next(iter(test_loader))# show all images as one image gridimageshow(torchvision.utils.make_grid(images))# Show the real labels on the screen print('Real labels: ', ' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))# Let's see what if the model identifiers the  labels of those exampleoutputs = model(images)# We got the probability for every 10 labels. The highest (max) probability should be correct label_, predicted = torch.max(outputs, 1)# Let's show the predicted labels on the screen to compare with the real onesprint('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(batch_size)))
执行模型
if __name__ == "__main__":# Let's build our modeltrain(5)print('Finished Training')# Test which classes performed welltestAccuracy()# Let's load the model we just created and test the accuracy per labelmodel = Network()path = "myFirstModel.pth"model.load_state_dict(torch.load(path))# Test with batch of imagestestBatch()

在这里插入图片描述

总结

pytorch 搭建一个 CNN 模型比较简单,5 轮训练之后,效果就可以达到 60%,10 张图片中预测对了 6 张。

http://www.yayakq.cn/news/443140/

相关文章:

  • 网站建设企业模板高端品牌网站建设集团
  • 网站建设推广ppt长春网站制作系统
  • 哪些网站可以免费发帖做推广wordpress第三方用户系统
  • 网站需要哪些thecontent WordPress
  • 国际网站开发客户的技巧自己怎么注册域名
  • 学校网站建设用哪个系统网站需求列表
  • 女做受视频网站专业网站建设制作公司哪家好
  • 珠海网站建设推广厂商无锡电子商务网站建设公司
  • 作品展示html5网站模板网站建设市场行情
  • 如何用一个域名做多个网站福建建设资格执业注册管理中心网站
  • 2012服务器做网站河南seo推广多少钱
  • 网站开发易语言杭州建设网杭州建设工程招标平台
  • 购物网站的经营要素珠海网站设计哪家好
  • 淄博网站优化资讯vi设计开题报告
  • 网站开发的语言有什么软件网站建设方案书人员资金安排
  • 有产品做推广 选哪个 网站wordpress虚拟
  • 济南网站自然优化wordpress 一页一屏
  • 江门网站设计模板怎么查询网站备案接入商
  • 网站建设总结心得wordpress网站登录被篡改
  • 做外贸哪些网站可以发免费信息好看的wordpress主题
  • 广东网站设计费用专业网站是指什么
  • 网站建设实训过程应急管理部
  • wix做的网站在国内访问不了北京 网站建设托管公司
  • 泰州网站制作网站建设哪种品牌好
  • 获取网站访客qq号码源码收录排名好的发帖网站
  • 网站文章不收录怎么办河南省法制建设研究会网站
  • 推进门户网站建设工作wordpress助手网
  • 洛阳做天然气公司网站wordpress 编辑index
  • 响应式网站尺寸古典风网站
  • 做外汇网站做什么类型网站好js 调用本地wordpress