当前位置: 首页 > news >正文

百度seo整站优化深圳网页设计网站制作

百度seo整站优化,深圳网页设计网站制作,编程培训机构排名前十,做推广自己找网站尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形…

尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形式发布,并做出更多的相关解释。

更欢迎有识之士、广大读者朋友,指出其中的错误。非常感谢大家的帮助。

在《机器学习数学基础》第29页到第30页,推导过渡矩阵和坐标变换的时候,原文有一些错误。下面将推导过程重新编写如下,并且增加一些更详细的说明。此说明没有写入原文,是为了协助理解这段推导而作。

针对性的修改,请参阅:勘误与修订


{ α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} α i \pmb{\alpha}_i αi 表示列向量) 是某个向量空间的一个基,则该空间中一个向量 O A → \overrightarrow{OA} OA 可以描述为:

O A → = x 1 α 1 + ⋯ + x n α n (1.3.4) \overrightarrow{OA} = x_1\pmb{\alpha}_1 + \cdots + x_n\pmb{\alpha}_n\tag{1.3.4} OA =x1α1++xnαn(1.3.4)
其中的 ( x 1 , ⋯ , x n ) (x_1, \cdots, x_n) (x1,,xn) 即为向量 O A → \overrightarrow{OA} OA 在基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn}坐标

如果有另外一个基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} β i \pmb{\beta}_i βi 表示列向量),向量 O A → \overrightarrow{OA} OA 又描述为:

O A → = x 1 ′ β 1 + ⋯ + x n ′ β n (1.3.5) \overrightarrow{OA} = x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n\tag{1.3.5} OA =x1β1++xnβn(1.3.5)
那么,同一个向量空间的这两个基有没有关系呢?有。不要忘记,基是一个向量组,例如基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} 中的每个向量也在此向量空间,所以可以用基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 线性表出,即:

{ β 1 = b 11 α 1 + ⋯ + b n 1 α n ⋮ β n = b 1 n α 1 + ⋯ + b n n α n \begin{cases}\begin{split}\pmb{\beta}_1 &= b_{11}\pmb{\alpha}_1 + \cdots + b_{n1}\pmb{\alpha}_n \\ \vdots \\\pmb{\beta}_n &= b_{1n}\pmb{\alpha}_1 + \cdots + b_{nn}\pmb{\alpha}_n \end{split}\end{cases} β1βn=b11α1++bn1αn=b1nα1++bnnαn
以矩阵(这里提前使用了矩阵的概念,是因为本书已经在前言中声明,不假定读者完全没有学过高等数学。关于矩阵的更详细内容,请参阅第2章)的方式,可以表示为:

[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] (1.3.6) \begin{equation} \begin{split} \begin{bmatrix}\pmb{\beta}_1&\cdots&\pmb{\beta}_n\end{bmatrix} = \begin{bmatrix}\pmb{\alpha}_1&\cdots&\pmb{\alpha}_n\end{bmatrix}\begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} \end{split} \end{equation}\tag{1.3.6} [β1βn]=[α1αn] b11bn1b1nbnn (1.3.6)
其中:

P = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] \pmb P = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} P= b11bn1b1nbnn
称为基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 向基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn}过渡矩阵。显然,过渡矩阵实现了一个基向另一个基的变换。

定义 在同一个向量空间,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P ,则:
[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] P [\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n] = [\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n]\pmb P [β1βn]=[α1αn]P

根据(1.3.5)式,可得:

x 1 ′ β 1 + ⋯ + x n ′ β n = x 1 ′ b 11 α 1 + ⋯ + x 1 ′ b n 1 α n + ⋯ + x n ′ b 1 n α 1 + ⋯ + x n ′ b n n α n = ( x 1 ′ b 11 + ⋯ + x n ′ b 1 n ) α 1 + ⋯ + ( x 1 ′ b n 1 + ⋯ + x n ′ b n n ) α n \begin{split}x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n &= x_1'b_{11}\pmb{\alpha}_1 + \cdots + x_1'b_{n1}\pmb{\alpha}_n \\ & \quad + \cdots \\ & \quad + x_n'b_{1n}\pmb{\alpha}_1 + \cdots + x_n'b_{nn}\pmb{\alpha}_n \\ &=(x_1'b_{11}+ \cdots + x_n'b_{1n})\pmb{\alpha}_1 \\ & \quad + \cdots \\ &\quad+(x_1'b_{n1} + \cdots + x_n'b_{nn})\pmb{\alpha}_n\end{split} x1β1++xnβn=x1b11α1++x1bn1αn++xnb1nα1++xnbnnαn=(x1b11++xnb1n)α1++(x1bn1++xnbnn)αn
(1.3.4)式 和(1.3.5)式描述的是同一个向量,所以:

{ x 1 = x 1 ′ b 11 + ⋯ + x n ′ b 1 n ⋮ x n = x 1 ′ b n 1 + ⋯ + x n ′ b n n \begin{cases}\begin{split}x_1 &= x_1'b_{11} + \cdots + x_n'b_{1n}\\&\vdots\\x_n &= x_1'b_{n1} + \cdots + x_n'b_{nn}\end{split}\end{cases} x1xn=x1b11++xnb1n=x1bn1++xnbnn
如果写成矩阵形式,即:

[ x 1 ⋮ x n ] = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] [ x 1 ′ ⋮ x n ′ ] (1.3.7) \begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix}\begin{bmatrix}x_1'\\\vdots\\x_n'\end{bmatrix}\tag{1.3.7} x1xn = b11bn1b1nbnn x1xn (1.3.7)
表示了在同一个向量空间中,向量在不同基下的坐标之间的变换关系,我们称为坐标变换公式

定义 在某个向量空间中,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P 。某向量在基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 的坐标是 x = [ x 1 ⋮ x n ] \pmb{x}=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} x= x1xn ,在基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的坐标是 x ′ = [ x 1 ′ ⋮ x n ′ ] \pmb x'=\begin{bmatrix}x_1'\\\vdots \\x_n'\end{bmatrix} x= x1xn ,这两组坐标之间的关系是:
x = P x ′ \pmb x = \pmb P \pmb x' x=Px


《机器学习数学基础》第29页到第30页的错误,是我讲授《机器学习数学基础》的课程时发现的。现在深刻体会到:教,然后知不足。教学相长,认真地研究教学,也是自我提升。

http://www.yayakq.cn/news/487874/

相关文章:

  • 手机电影网站怎么做的网站空间怎么登陆
  • 佛山关键词网站排名淄博知名的做网站推广
  • 做网站需要准备什么东西贷款网站模版
  • 广州一起做网店属于什么网站创办一个网站多少钱
  • asp网站开发人员招聘怎么做宣传网页
  • 做网站动态背景的图片小程序公司代理
  • 电商网站制作论坛推广方案
  • 公司网站域名如何续费如何建设黔货出山电子商务网站
  • 弹出快捷菜单一般通过网站优化托管方案文库
  • 淘宝网站的建设目标是基于html5个人网站设计论文
  • 网站特色高水平的网站建设
  • 建设建材网站的目的成都哪家做网站好
  • 小型教育网站的开发建设开题报告宝尊代运营一年要多少钱
  • 惠州建设工程造价管理协会网站wordpress自定义首页布局
  • 方山网站建设蚌埠网页设计
  • 合作建设网站协议百度会员
  • 做网站哪家公司好phpcms 网站栏目
  • 关于网站开发的网店计划书范文一个公司做多个网站
  • 福建泉州曾明军的网站成都网站建设中心
  • 阿里云虚拟主机wordpress建站教程网站购买后如何做
  • 动态商务网站开发与管理好看的单页面网站模板
  • 所得税汇算清缴在哪个网站做装潢设计是干嘛的
  • 南宁市网站建设公司凌云seo博客
  • 做网站很累新闻热点事件2021(最新)
  • 网站建设英语要几级小米手机做网站服务器
  • vvv wordpressseo流量软件
  • 小企业网站建设服务不同性质网站的营销特点一览表
  • 得力文具网站建设策划书想推网站目录源码
  • 在线视频2018免费视频企业怎么做好网站优化
  • 免费做手机网站网站被k的表现