当前位置: 首页 > news >正文

景翔物流网站建设公司艺梵科技 网站建设

景翔物流网站建设公司,艺梵科技 网站建设,优化营商环境调度,广州公司注册公司流程目录 一、560.和为K的⼦数组1.1 前缀和1.2 暴力枚举 二、974.和可被K整除的⼦数组2.1 前缀和2.2 暴力枚举 三、525.连续数组3.1 前缀和3.2 暴力枚举 四、1314.矩阵区域和4.1 前缀和4.2 暴力枚举 一、560.和为K的⼦数组 题目链接:560.和为K的⼦数组 题目描述&#x…

目录

  • 一、560.和为K的⼦数组
    • 1.1 前缀和
    • 1.2 暴力枚举
  • 二、974.和可被K整除的⼦数组
    • 2.1 前缀和
    • 2.2 暴力枚举
  • 三、525.连续数组
    • 3.1 前缀和
    • 3.2 暴力枚举
  • 四、1314.矩阵区域和
    • 4.1 前缀和
    • 4.2 暴力枚举

一、560.和为K的⼦数组

题目链接:560.和为K的⼦数组
题目描述:

题目解析:

  • 求数组中子串的和为k的个数。

1.1 前缀和

解题思路:

  • 假设已经创建好了一个前缀和数组dp,我们使用前缀和的时候,判断从0到 i 位置的和为k的子数组个数,只需要在dp下标[ 0 , i - 1 ]中找dp元素值为dp[ i ] - k的个数即可。
  • 所以我们使用一个容器hash表来存储从0 到 i - 1的前缀和的个数,关键字key就是前缀和,values就是次数。
  • 细节处理:
    • 我们不需要真的使用前缀和数组,只需要遍历原数组时,用一个变量记录遍历过的元素和即可。
    • 当该前缀和就是k的时候,我们上面条件没有考虑,所以我们还要先放入(0,1)表示这种情况。

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraySum(int[] nums, int k) {Map<Integer,Integer> hash = new HashMap<>();hash.put(0,1);int sum = 0;int ret = 0;for(int i = 0; i < nums.length; i++) {sum += nums[i];ret += hash.getOrDefault(sum-k,0);hash.put(sum, hash.getOrDefault(sum,0)+1);}return ret;}
}

1.2 暴力枚举

解题思路:

  • 直接使用两层for循环,将每一种可能枚举出来。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraySum(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if(sum == k) {ret++;}}}return ret;}
}

二、974.和可被K整除的⼦数组

题目链接:974.和可被K整除的⼦数组
题目描述:

题目解析:

  • 跟上一道题一样的思路,只不过这个是求能被整除的个数而已。

2.1 前缀和

解题思路:

  • 同余定理:如果(a - b)% p == 0 那么a % p 和b % p值相等。
  • Java中负数对正数取余修正:在Java中负数对正数取余余数会是负数,修正方法就是:(a % p + p)% p
  • 使用hash表将i下标前的每一个前缀和与k的余数存入。
  • 再看前面前缀和与当前 前缀和的余数相同的个数即可。
  • 当[0 , i]本身前缀和余数为0的时候,就是一个符合条件的子数组。

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;Map<Integer,Integer> hash = new HashMap<>();hash.put(0 % k , 1);int sum = 0;for(int x : nums) {sum += x;int key = (sum % k + k ) % k;ret += hash.getOrDefault(key,0);hash.put(key, hash.getOrDefault(key , 0) + 1);}return ret;}
}

2.2 暴力枚举

解题思路:

  • 直接遍历数组,在将遍历元素的和取余即可。
  • 会超时。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if((sum % k + k) % k == 0) ret++;}}return ret;}
}

三、525.连续数组

题目链接:525.连续数组
题目描述:

题目解析:

  • 要我们返回子数组中 0 和1 数量相等的最长子数组的长度。

3.1 前缀和

解题思路:

  • 我们使用一个容器hash表,关键字key来记录原数组每个下标i中的1与0个数差,而values记录这个差值的最小下标。
  • 注意边界情况,如果刚好整个数组满足条件,结果就是数组长 又等于nums.length-1 + 1所以我们初始一个(0,-1)
  • 求长度的时候,我们在前面找到 j 下标与现在 i 下标关键字一样,那么数组区间就是[ j+1 , i ]

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;int n = nums.length;Map<Integer,Integer> hash = new HashMap<>();hash.put(0,-1);//前面1和0个数之差int num = 0;for(int i = 0; i < n; i++) {if(nums[i] == 0) num--;else num++;if(hash.containsKey(num)) ret = Math.max(ret, i - hash.get(num));else hash.put(num, i);}return ret;}
}

3.2 暴力枚举

解题思路:

  • 两层for循环遍历数组,记录每一个子数组中1和0的个数,
  • 当个数相同的时候,更新结果。
  • 会超时

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;for(int i = 0; i < nums.length; i++) {int oneNum = 0;int zeroNum = 0;for(int j  = i; j < nums.length; j++) {if(nums[j] == 0) zeroNum++;else oneNum++;if(oneNum == zeroNum) ret = Math.max(ret,j-i+1);}}return ret;}
}

四、1314.矩阵区域和

题目链接:1314.矩阵区域和
题目描述:

题目解析:

  • 给一个二维数组,给一个k,返回的二维结果数组中数组( i , j )下标的值是原数组( i-k , j-k )到( i+k , j+k)的和。
  • 就像下图中红方框框起来的:

4.1 前缀和

解题思路:

  • 其实着就是前缀和上篇中给出的二维前缀和模版。
  • 我们使用一个二维数组dp比原来数组多一行一列,dp[ i ][ j ]就是原数组中(0 , 0)到(i - 1 , j -1)的元素和。
  • dp[ i ][ j ] = dp[ i - 1][j - 1] + nums[ i - 1][j - 1]。
  • 在结果数组中与原数组大小一样,本来是求原数组( i-k , j-k )到( i+k , j+k)的和。那么对应到dp数组中,都要加1。
  • 注意越界,如果( i-k , j-k )小于0那么就是0,i+k大于原数组行数,那么就是原数组行数,j+k大于原数组列数,那么就是原数组列数。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(n^2)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] dp = new int[n+1][m+1];dp[0][0] = mat[0][0];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + mat[i-1][j-1];}    } int[][] ret = new int[n][m]; for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;ret[i][j] = dp[x2+1][y2+1] - dp[x2+1][y1-1+1] - dp[x1-1+1][y2+1]+dp[x1-1+1][y1-1+1];}}return ret;}
}

4.2 暴力枚举

解题思路:

  • 先两层for循环,拿到结果数组行列,
  • 再两层for循环,求原数组( i-k , j-k )到( i+k , j+k)的和。

解题代码:

//时间复杂度:O(n^4)
//空间复杂度:O(1)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] ret = new int[n][m];for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;for(int w = x1; w <= x2; w++) {for(int q = y1; q <= y2; q++) {ret[i][j] += mat[w][q];}}}}return ret;}
}
http://www.yayakq.cn/news/757386/

相关文章:

  • 织梦网站内容自动更新阿里云域名注册官网电话
  • 用django怎么做网站网络推广员有前途吗
  • 网站域名的选择深圳小程序
  • 珠海网站建设推广公司电气网站设计
  • 沈阳网站制作公司怎么下载html中的视频
  • 网站空间代理加盟wordpress king主题
  • 超市设计网站网站制作公司dedecms
  • 租一个服务器要多少钱seo工作室
  • 郴州网站建设哪里比较好做社交网站有哪些
  • 铁路建设工程网站中国企业网官方网站
  • 安全的合肥网站建设seo网站推广优化
  • 检测网站是否安全商城网站建设需求分析
  • 自己怎么做商城网站视频教程工程项目立项流程
  • 网站公司做的比较好微商城开发公司有哪些比较好
  • 邢台网站建设厂家网站有什么作用
  • 外贸公司推广提升关键词优化排名软件
  • 高新网站建设哪家好下载网站开发
  • 中国最好的网站建设公司免费平台推广
  • 2003 iis网站发布中企动力科技股份有限公司销售
  • 网站开发网站说明怎么写自适应科技公司网站模板
  • 厦门网站制作维护研发工程师和开发工程师
  • 网站开发工程师好吗一家公司为什么要建官方网站
  • 网站为什么要维护装修网站建设服务商
  • 内蒙古呼和浩特市做网站的公司大连金普新区规划建设局网站
  • 网站建设的简历织梦建设两个网站 视频
  • 百度收录网站定位地址虚拟主机租赁
  • 网站策划职业规划网站二级域名
  • 网站建设与推广论文怎样用模块做网站
  • 东莞网站建设必要性邢台123生活网
  • 网站建设规划书感受四大门户网站排名