当前位置: 首页 > news >正文

手机网站转换小程序株洲高端网站建设工作室

手机网站转换小程序,株洲高端网站建设工作室,深圳建网站哪个好,站长推荐自动跳转一、概述 数据增强是一种通过人工或自动方式对数据进行修改或变换,以增加数据集规模和多样性的技术。在机器学习中,数据增强被广泛应用于解决数据稀缺、数据不平衡、数据噪声等问题,提高模型的泛化能力和鲁棒性。 二、为什么需要数据增强 …

一、概述

数据增强是一种通过人工或自动方式对数据进行修改或变换,以增加数据集规模和多样性的技术。在机器学习中,数据增强被广泛应用于解决数据稀缺、数据不平衡、数据噪声等问题,提高模型的泛化能力和鲁棒性。

二、为什么需要数据增强

图像增强在深度学习卷积神经网络 (CNN) 背景下至关重要,因为它有助于满足有效模型训练对大型且多样化数据集的需求。 CNN 需要大量图像才能有效训练,而图像增强提供了一种人为扩展现有数据集的方法。通过缩放、旋转、剪切或裁剪等技术创建图像变化,图像增强有助于生成更全面的可能图像集。这种多样化的数据集使模型能够更好地泛化,减少过度拟合,并在测试或验证过程中对以前未见过的数据进行评估时提高其性能。因此,图像增强对于提高训练数据的质量和数量至关重要,最终导致更强大和更准确的 CNN 模型。

三、什么时候使用数据增强

图像增强可以作为训练模型之前的预处理步骤,也可以在训练过程中实时应用。当用作预处理步骤时,应用增强来增加数据集的大小,特别是在处理需要扩展的小型训练数据集时。这种方法称为离线或预处理增强,涉及生成现有图像的变体以创建更多样化的数据集。应用图像增强时仔细考虑问题领域非常重要,因为某些增强策略可能与特定任务无关或无用。例如,在对不同类型的汽车进行分类时,垂直翻转汽车可能不会为数据集增加价值。因此,图像增强的应用应根据问题领域的具体要求进行定制。


四、数据增强实战

原始图像及标签:

运行数据增强代码:


增强后的数据及标签:

 关键代码:

数据增强:

import cv2
import numpy as np
from PIL import Image, ImageDrawdef rand(a=0, b=1):return np.random.rand()*(b-a) + adef get_random_data(annotation_line, input_shape, jitter=.3, hue=.1, sat=0.7, val=0.4, random=True):line    = annotation_line.split()#------------------------------##   读取图像并转换成RGB图像#------------------------------#image   = Image.open(line[0])image   = image.convert('RGB')#------------------------------##   获得图像的高宽与目标高宽#------------------------------#iw, ih  = image.sizeh, w    = input_shape#------------------------------##   获得预测框#------------------------------#box     = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])if not random:scale = min(w/iw, h/ih)nw = int(iw*scale)nh = int(ih*scale)dx = (w-nw)//2dy = (h-nh)//2#---------------------------------##   将图像多余的部分加上灰条#---------------------------------#image       = image.resize((nw,nh), Image.BICUBIC)new_image   = Image.new('RGB', (w,h), (128,128,128))new_image.paste(image, (dx, dy))image_data  = np.array(new_image, np.float32)#---------------------------------##   对真实框进行调整#---------------------------------#if len(box)>0:np.random.shuffle(box)box[:, [0,2]] = box[:, [0,2]]*nw/iw + dxbox[:, [1,3]] = box[:, [1,3]]*nh/ih + dybox[:, 0:2][box[:, 0:2]<0] = 0box[:, 2][box[:, 2]>w] = wbox[:, 3][box[:, 3]>h] = hbox_w = box[:, 2] - box[:, 0]box_h = box[:, 3] - box[:, 1]box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid boxreturn image_data, box#------------------------------------------##   对图像进行缩放并且进行长和宽的扭曲#------------------------------------------#new_ar = iw/ih * rand(1-jitter,1+jitter) / rand(1-jitter,1+jitter)scale = rand(.25, 2)if new_ar < 1:nh = int(scale*h)nw = int(nh*new_ar)else:nw = int(scale*w)nh = int(nw/new_ar)image = image.resize((nw,nh), Image.BICUBIC)#------------------------------------------##   将图像多余的部分加上灰条#------------------------------------------#dx = int(rand(0, w-nw))dy = int(rand(0, h-nh))new_image = Image.new('RGB', (w,h), (128,128,128))new_image.paste(image, (dx, dy))image = new_image#------------------------------------------##   翻转图像#------------------------------------------#flip = rand()<.5if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)image_data      = np.array(image, np.uint8)#---------------------------------##   对图像进行色域变换#   计算色域变换的参数#---------------------------------#r               = np.random.uniform(-1, 1, 3) * [hue, sat, val] + 1#---------------------------------##   将图像转到HSV上#---------------------------------#hue, sat, val   = cv2.split(cv2.cvtColor(image_data, cv2.COLOR_RGB2HSV))dtype           = image_data.dtype#---------------------------------##   应用变换#---------------------------------#x       = np.arange(0, 256, dtype=r.dtype)lut_hue = ((x * r[0]) % 180).astype(dtype)lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)lut_val = np.clip(x * r[2], 0, 255).astype(dtype)image_data = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))image_data = cv2.cvtColor(image_data, cv2.COLOR_HSV2RGB)#---------------------------------##   对真实框进行调整#---------------------------------#if len(box)>0:np.random.shuffle(box)box[:, [0,2]] = box[:, [0,2]]*nw/iw + dxbox[:, [1,3]] = box[:, [1,3]]*nh/ih + dyif flip: box[:, [0,2]] = w - box[:, [2,0]]box[:, 0:2][box[:, 0:2]<0] = 0box[:, 2][box[:, 2]>w] = wbox[:, 3][box[:, 3]>h] = hbox_w = box[:, 2] - box[:, 0]box_h = box[:, 3] - box[:, 1]box = box[np.logical_and(box_w>1, box_h>1)] return image_data, box

调用代码:

import os
from random import sampleimport numpy as np
from PIL import Image, ImageDrawfrom utils.random_data import get_random_data, get_random_data_with_MixUp
from utils.utils import convert_annotation, get_classes#-----------------------------------------------------------------------------------#
#   Origin_VOCdevkit_path   原始数据集所在的路径
#-----------------------------------------------------------------------------------#
Origin_VOCdevkit_path   = "VOCdevkit_Origin"
#-----------------------------------------------------------------------------------#
#   input_shape             生成的图片大小。
#-----------------------------------------------------------------------------------#
input_shape             = [640, 640]if __name__ == "__main__":Origin_JPEGImages_path  = os.path.join(Origin_VOCdevkit_path, "VOC2007/JPEGImages")Origin_Annotations_path = os.path.join(Origin_VOCdevkit_path, "VOC2007/Annotations")#---------------------------##   遍历标签并赋值#---------------------------#xml_names = os.listdir(Origin_Annotations_path)#------------------------------##   获取一个图像与标签#------------------------------#sample_xmls     = sample(xml_names, 1)unique_labels   = get_classes(sample_xmls, Origin_Annotations_path)jpg_name        = os.path.join(Origin_JPEGImages_path, os.path.splitext(sample_xmls[0])[0] + '.jpg')xml_name        = os.path.join(Origin_Annotations_path, sample_xmls[0])line = convert_annotation(jpg_name, xml_name, unique_labels)#------------------------------##   各自数据增强#------------------------------#image_data, box_data  = get_random_data(line, input_shape) img = Image.fromarray(image_data.astype(np.uint8))for j in range(len(box_data)):thickness = 3left, top, right, bottom  = box_data[j][0:4]draw = ImageDraw.Draw(img)for i in range(thickness):draw.rectangle([left + i, top + i, right - i, bottom - i],outline=(255, 255, 255))img.show()

http://www.yayakq.cn/news/61016/

相关文章:

  • 电影网站开发iis7.5网站配置
  • 怎么样查看网站开发语言杭州网站制作平台公司
  • 网站建设好了却收不到成都广告设计公司排名
  • 昆明网站开发推广公司房产网 最新楼盘价格
  • 开封市住房和城乡建设局网站网站建设与管理的就业方向
  • 爱网站长尾关键词挖掘工具做ps可以在哪些网站上找素材
  • 山东省住房和城乡建设厅网站教育中心苏州吴中区做网站
  • 淄博网站建设网站推广优化seo服务理念
  • 郑州优化网站公司商场建设相关网站
  • 网站被黑客入侵怎么办网站运营周期
  • 网站资料清单常见的网站建设类型都有哪些方面
  • 深圳高端网站制作公司关键词代发包收录
  • 谷歌网站排名个人如果做网站赚钱
  • 河南艾特 网站建设全国企业信用信息系统网官网登录
  • 非洲购物网站排名腾讯微信朋友圈广告代理
  • 眼科医院网站设计怎么做定制wordpress
  • 安徽两学一做专题网站h5页面怎么生成链接
  • 弹窗广告最多的网站长沙网页设计公司排名
  • 开关网站建设宁波网站建设制作网络公司
  • 杭州建设网站需要多少钱网站建设模范代码
  • 网站建设怎么报价表平面设计有哪些公司
  • 创建虚拟网站做点击公司做网站的钱网银转账用途
  • 宁波江东区网站建设工作室注册流程及需要的材料
  • 银行官方网站陕西手机网站建设
  • 做网站定金交多少合适汇源企业网络营销策划
  • 成品网站网站建设代码介绍
  • 制作网站教学设计山西网站建设公司哪家好
  • 小说网站怎么建设用手机制作自己的网站
  • 意大利做包招工的网站嘉兴市建设官方网站
  • 医疗网站建设管理电子商务网站建设自服务器